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ABSTRACT

The rapid decrease in the dimensions of integrated circuits has
necessitated corresponding higher-resolution methods for de-
fect imaging. Current state of the art, defect imaging systems
are reaching the limits of their resolution. In this work, we are
proposing a new overcomplete dictionary based sparse sig-
nal imaging framework to improve the resolution and local-
ization in confocal microscopy systems for backside optical
integrated circuit defect imaging. The domain of integrated
circuit imaging is particularly suitable for the application of
overcomplete dictionaries in an image reconstruction frame-
work because the images are highly structured, containing
predictable building blocks derivable from the correspond-
ing computer aided design layouts. This structure provides
a strong and natural a-priori dictionary for scene reconstruc-
tion. This dictionary prior is coupled with a physically-based
observation model to create enhanced scene reconstructions.
The approach is described and results on simulated data are
provided.

Index Terms— backside integrated circuit imaging,
sparse signal representation, overcomplete dictionary, im-
age reconstruction, high numerical aperture microscopy

1. INTRODUCTION

Integrated Circuits (ICs) have undergone a continuous and on-
going reduction in size. This reduction in the dimensions of
circuit features necessitates the use of higher and higher res-
olution defect detection and failure analysis techniques, such
as Laser Voltage Imaging, Laser Voltage Probing. Optical
techniques for defect detection are limited to backside meth-
ods because of opaque metal interconnect layers and flip-chip
bonding. Backside optical imaging as a non-invasive tech-
nique is crucial for lateral registration of coupled failure anal-
ysis measurements to the circuit layout. The state of the art
technique to achieving the highest resolution in backside IC
optical imaging is to use an aplanatic Solid Immersion Lens
(aSIL) [1], which increases the numerical aperture (NA) of
the optical system and hence improves the resolution. In high
NA optical systems, focused light near the dielectric inter-
faces has properties which cannot be explained by scalar op-

tical theory requiring a full vectorial analysis of the fields
[2, 3]. Spatial resolution improvement in selected directions
has been shown through the use of linearly polarized light in
SIL backside optical imaging systems [4, 5]. Unfortunately,
even the resolution of aSIL imaging is being overcome by
new, smaller IC manufacturing methods.

In our previous work [6], we proposed a novel image fu-
sion framework that benefits from both polarization diversity
of the high numerical aperture (NA) optical systems and prior
knowledge about the structures in ICs. The reconstruction
framework in [6] incorporated vectorial polarization effects in
the system model and accomplished resolution improvement
by fusing information from various polarizations and by using
currently popular sparse reconstruction priors. While the use
of such generic sparsifying priors produces an improvement
over conventional methods, more improvement is needed.

Fig. 1: CAD design example

In this work our goal is to exploit the highly structured
nature of this problem and impose stronger structural priors
through the use of predefined overcomplete dictionaries in the
reconstruction framework. Such a framework is well matched
to IC imaging since associated chip CAD layouts contain the
information about the building blocks of the ICs. A CAD
layout example is shown in Fig. 1. In particular, ICs are
mostly composed of horizontal or vertical lines of varying,
constrained and known widths and lengths. This suggests
that regions we are imaging in ICs can be sparsely repre-
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sented using a predetermined overcomplete dictionary com-
posed of these building blocks. This sparse representation
based on predetermined overcomplete dictionaries will pro-
vide increased robustness to model mismatches, noise and
resolution limits since they pose strong priors for the struc-
tures in ICs. We couple this new IC imaging prior with our
previous physics-based aSIL imaging model for enhanced im-
age reconstruction.

Sparse signal representation through overcomlete dictio-
naries has been well studied in the image reconstruction lit-
erature. Dictionary based reconstruction methods differ in
how they form the overcomplete dictionary. One set of tech-
niques learns an overcomplete dictionary from a set of train-
ing images and then uses this learned dictionary in the im-
age reconstruction by representing the underlying image as
a sparse linear combination of the elements of the learned
dictionary[7, 8, 9]. Another approach is to use a predeter-
mined overcomplete dictionary to sparsely represent the scene
being imaged, such as a wavelet based dictionary [10, 11], a
point and region-based dictionary or a shape-based dictionary
[12]. In this work, we adapt the shape and region based dic-
tionary approach.

To best of our knowledge there is no prior work that incor-
porates sparse representations and dictionaries for resolution
enhancement in IC imaging. This type of representation is
especially useful for this application field because of the in-
formation coming from the CAD layouts, which contain all
the underlying structures and building blocks in the IC. Un-
like general dictionary-based problems, this constraint serves
to effectively limit the corresponding problem size and allows
the use of global rather than local, patch-based dictionaries.

Our paper is organized as follows. In Section 2, we pro-
vide details of the proposed framework. In Section 2.1 we de-
velop the physics-based IC imaging observation model. The
sparse representation framework is presented in Section 2.2
while the corresponding construction of the dictionaries is
given in Section 2.3. We present experimental results on sim-
ulated data in Section 3. In Section 4, we provide summary
and conclusions.

2. DICTIONARY-BASED IC IMAGING
FRAMEWORK

2.1. Observation model

When linearly polarized light is used as the illuminating
source in high NA optical systems, the point spread function
(PSF) has an elliptical support resulting in better resolution
in a certain direction. The PSF rotates when the polarization
direction is changed. Multiple observations can be obtained
by changing the polarization direction. Each of the obser-
vations provides more detail in the direction aligned with
tighter support while under-resolving in other directions. We
approximated the nonlinear optical system with a linearized

convolutional forward model relating the intensity of the ob-
ject to the collected image intensity through a PSF, ignoring
the coherence and phase effects for now. Such a model can
be expressed as follows:

gj(x, y) = hj(x, y) ∗ f(x, y), (1)

where gj(x, y) is the observed intensity under linearly polar-
ized light corresponding to direction j, f(x, y) is the intensity
of the underlying object, ∗ denotes the convolution operation,
and hj(x, y) is the PSF of the optical system having linear
polarized light at direction j as input light source. In order
to incorporate high NA and dielectric interface effects in our
simulation of the theoretical PSF, we used the Angular Spec-
trum Representation (ASR) [2].

In practice, the data we collect is discretized in spatial
coordinates on a uniformly spaced grid and Eq. 1 becomes:

gj = Hjf , (2)

where gj is the vectorized discrete observation data, f is
the discrete vectorized underlying object image, Hj is the
Toeplitz matrix that implements convolution as a matrix op-
eration.

2.2. Sparse Representation framework for resolution en-
hanced IC imaging

The goal of the proposed sparse representation framework is
to benefit from underlying knowledge about the structures in
ICs to produce a higher resolution image. We also combine
the information coming from high-resolution orientation in-
formation in each observation by incorporating the multiple
observations from Section 2.1 into the sparse representation
framework.

If we assume that the unknown underlying scene f can be
represented as:

f = Φα, (3)

where Φ is the appropriate overcomplete dictionary composed
of building blocks of the structures in the IC and α is the vec-
tor of representation coefficients. This dictionary allows us
to sparsely represent the image of the unknown IC region we
are imaging. The dictionary can be predetermined by using
our prior knowledge about the structures in ICs under consid-
eration – for example that the structures are lines of specified
width and varying length. Combining this sparse representa-
tion with the observation model in Eq. 2, the overall model
can be rewritten in the presence of noise wj as:

gj = HjΦα+ wj . (4)

We now create an estimate of the underlying IC scene by
posing this as a basis pursuit denoising problem [13]; that
is, a sparse reconstruction problem with respect to the given
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circuit dictionary Φ. An equivalent, Lagrangian form of this
optimization problem is given by:

α̂ = arg min
α
J(α) =

n∑
j=1

‖ HjΦα− gj ‖22 + λ ‖ α ‖1, (5)

where n is the total number of observed images at various po-
larizations and λ is a regularization parameter that determines
the overall level of problem sparsity.

The cost function in Eq. 5 is non-quadratic resulting in
a challenging nonlinear minimization problem. There are a
number of methods that have been developed for its solution
in the literature from greedy methods, such as matching pur-
suit to linear programming methods. Here we adapt the quasi-
Newton optimization method developed in [12]. This method
solves a sequence of reweighted least squares problems in an
iterative context. Each iteration results in a linear problem
that is solved using matrix inversion. The outer iterations are
terminated when ‖α̂(k+1) − α̂(k)‖22/‖α̂(k)‖22 < δ, where δ is
a small positive constant.

2.3. Construction of Dictionaries

The structures in ICs consist of flat regions consisting of hori-
zontal and vertical lines of constrained and varying width and
length as can be seen in the CAD layout in Fig. 1. To con-
struct our dictionary we divided the structures into rectangles
and included all possible locations of different size rectan-
gles into the dictionary. For example if we want to sparsely
represent the design shown in Fig. 2, we would construct the
dictionary consisting of the elements shown in Fig. 3. The
columns of the dictionary Φ would consists of vectorized ver-
sions of all these images shown in Fig. 3, figure shows every
third element of the dictionary.

Fig. 2: Design example

Ideally, we would specify the minimum and maximum
width and length of the rectangles, since these are set by de-
sign rules of ICs and then we would include all rectangles
within these limits to be in the dictionary.

3. EXPERIMENTAL RESULTS

The theoretical PSF of the aSIL optical system for a linearly
polarized input light source with polarization in the x direc-
tion is shown in Fig. 4. We used ASR ([2]) to simulate this
theoretical PSF. For light polarized in the y direction the PSF
is the same but rotated by 90 degrees. Motivated by the CAD
test example in Fig. 1, we first created the phantom shown in

Fig. 3: Dictionary elements for design example
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Fig. 4: Simulated theoretical PSF for linearly-polarized input
light in x direction

Fig. 5. Using the theoretical PSFs we obtained observation
data at multiple polarizations. Then different levels of addi-
tive Gaussian noise was added. Noisy observations with 20
dB SNR are shown in Fig. 6. The reconstruction result of
the proposed sparse representation framework using the ob-
servations shown in Fig. 6 as input, are shown in Fig. 7a. The
iterations are terminated when δ, explained in Section 2.2 be-
came smaller than 10−4. The regularization parameters are
chosen for best Mean Square Error (MSE) performance. We
also performed Tikhonov reconstruction ([14]) using the same
observations and the reconstruction is shown in Fig. 7b. The
mean square errors obtained for reconstructions with different
levels of noise are given in the plot in Fig. 8.
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Fig. 5: Phantom
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Fig. 6: Observed images under polarization in (a) x direction
and (b) y direction at 20 dB SNR.
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Fig. 7: Reconstructions from observations with 20 dB SNR
(a) Sparse representation framework λ = 0.325, (b) Tikhonov
reconstruction λ = 0.01.

4. CONCLUSIONS

In this work, we proposed a dictionary based reconstruction
framework for improvement of backside aSIL imaging of in-
tegrated circuits. The predetermined overcomplete dictionary
based sparse signal representation framework poses strong
priors for underlying IC structures and provides improved res-
olution in image reconstruction for this problem. The frame-
work incorporates polarization properties of high NA optical
systems using vectorial optics for PSF modeling and enables
fusion of multiple polarization observations to benefit from
improved resolution in each set of observation data. IC imag-
ing is particularly suitable for dictionary based image recon-
struction methods. First of all, CAD layouts store the neces-
sary information about the structures in the ICs that we are
imaging and these layouts can be used to predetermine the
dictionary. Also, the building blocks of structures in ICs come
from a limited set, mostly line segments of varying width and
length. Hence, these are strong priors for the structures in the
underlying image.
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Fig. 8: MSE plot comparing the proposed method with
Tikhonov reconstruction over different noise levels
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