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ABSTRACT
3D point cloud registration is traditionally done by aligning to
known information. This information can be extracted from seman-
tically labeled and geo-registered 2D images, e.g. maps, satellite
images, and labeled aerial photos. We propose an automated method
to geo-register 3D point clouds to 2D maps by defining a normalized
Hough similarity function and aligning planes (i.e., walls) in 3D
point clouds to lines in 2D maps. The collective set of algorithms
solves for seven degrees of freedom: three rotation parameters
(including the up vector), a scale value, and three translation pa-
rameters. After transforming the 3D point cloud into a manageable
2D representation, we apply existing and novel scan-matching tech-
niques to align both query and reference representations.

Index Terms— 3D, Registration, Point Cloud, Hough Trans-
form, Meanshift Clustering

1. INTRODUCTION

Increasingly powerful sensors, an exponentially growing internet,
and more capable processing technology have enabled the collection
of massive 3D models from ground-based data. For example, com-
puting Structure from Motion (SfM) in photo collections or video
can produce large-scale dense 3D point clouds. Data sources for
SfM techniques can be ordered or unordered photo collections (e.g.
from the internet) or video. Similarly, ground-based platforms, in-
cluding robotics, can employ LiDAR sensors to produce 3D mod-
els comprising millions of points in a matter of seconds. Given the
quantity and disparity of these datasets, automated fusion and reg-
istration of these data types becomes a necessity. More specifically,
processing and exploitation of 3D point clouds generally requires
geo-registration, meaning that the geographic location of each point
is known to the desired precision. Geo-registration is algorithmically
challenging in terms of accuracy and computational efficiency.

Although ground-based sensors are typically equipped with GPS
and other telemetry, there are often problems with the collected posi-
tioning data. Photo collections, particularly unordered datasets from
the internet, may have missing or inaccurate GPS metadata [1, 2].
Sensors may operate in GPS-denied environments or in multipath
conditions, such as indoors or in urban canyons. In the case of
robotics or ground-based vehicles, inaccuracies may be introduced
by motion of the platform. These problems can be mitigated by reg-
istering the point clouds against reference data. Reference sources
include aerial LiDAR surveys, satellite imagery, DTED, GIS, digital
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Fig. 1. Query and Reference Data Sources

maps, and other cartographic models. Reference sources are gener-
ally orthographic, nadir-looking images, which poses an interesting
challenge when trying to register a ground-based point cloud.

This work focuses on geo-registering point clouds from ground
sensors of urban settings with a significant number of man-made
structures. Buildings and structures have wall planes, which corre-
spond to lines in the orthographic images. This motivates the use of
the Hough Transform, which directly parameterizes planes and lines.
The Hough Transform also enables the definition of certain metrics
that facilitate correlation and matching that would otherwise be too
difficult in Euclidean space.

In this paper, we propose a technique for aligning a point cloud
to a 2D map image (e.g. from Google Maps or similar services). The
technique consists of several steps to recover the seven degrees of
freedom necessary to geo-register the point cloud. First, we describe
related work and plane clustering in Sec. 2 and Sec. 3. Then, we
transform the 3D point clouds into 2D entities by determining the
up vector in Sec. 4. Next, we determine the remaining degrees of
freedom in 2D by determining the orientation, scale, and translation
in Sec. 5. Finally, we show in Sec. 6 that such a methodology is
extremely powerful in enabling the user to geo-register point clouds.

2. RELATED WORK

The proposed algorithm seeks to align 3D point clouds to a scaled
map image. When matching 3D models to orthographic maps or im-
agery, planes perpendicular to the ground (i.e. building walls) corre-
spond to lines in the orthographic view. In this work, we match man-
made planar structures in point clouds to lines representing building
boundaries in map images. Registering 3D models to 2D and 3D
reference data is a well-studied problem with much related work.

Most commonly, reference data of the same type is used to align
a dataset (e.g. registering ground-based point clouds to other ground-
based point clouds). In this case, the most popular technique is
the Iterative Closest Point (ICP) algorithm [3] and its variants [4].
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ICP requires a reasonable initial estimate and iterates between ref-
erence and query points while updating parameters. Point clouds
with noisy outliers (common in clouds produced from SfM tech-
niques such as [1, 2]), can introduce non-convexity issues. On the
other hand, scan matching techniques discretize the solution space
and explicitly solve the non-convex optimization problem by ex-
haustive search [5, 6]. Extending the search to three dimensions can
be computationally difficult or prohibitive, depending on the desired
registration resolution, point density, and coverage overlap between
clouds.

Often, ground-based point clouds need to be aligned to different
data modalities, such as aerial data, because of its wide availabil-
ity. Large collections of aerial reference data are available from Li-
DAR and active sensor surveys (e.g. DTED, GIS, etc.), which offer
large coverage areas and robustness to sensor drift when compared
to ground-based sensors. Matching a ground-based point cloud to
aerial data presents challenges because the geometry is fundamen-
tally different between query and reference. Früh and Zakhor have
led work on registering heterogeneous LiDAR scans in order to cre-
ate beautiful fused city models through texture matching and facade
generation [7, 8, 9]. While great for near-regularly gridded, low-
noise, and dense point clouds, generalizing to more irregularly sam-
pled (and sparser) SfM clouds has not been addressed.

Perhaps most relevant to registering to maps is Kaminsksy et
al.’s work on aligning 3D SfM point clouds to satellite imagery,
in which an energy function is minimized to search over a discrete
space that covers a potentially vast 4D parameter space [10]. Such a
solution quickly requires assumptions or constraints in the optimiza-
tion problem to pare down the search space. In the proposed algo-
rithm, we show Hough parameters are conducive to a separable de-
termination of transform coefficients, where relative orientation can
be obtained independently of translation. This enabling technique
can allow the decoupling that makes a correlation manageable.

3. EFFICIENT REPRESENTATIONS FOR SCAN
MATCHING

To process the 3D point cloud and 2D images, we must have an effi-
cient representation of the data. Such a representation must have low
noise and produce a sparse yet salient representation of the operating
space. Fortunately, the large volume of 3D points can be parameter-
ized by a small but proportionate number of planes due to the abun-
dance of man-made objects. Similarly, the dense pixel space can be
characterized only the most relevant lines. In Sec. 3.1, we provide
notation and briefly review the Hough transform. In Sec. 3.2, we
define the Hough similarity function and propose a meanshift algo-
rithm that clusters points/pixels into planes/lines.

3.1. The Hough Transform and Notation

Let x ∈ D, where D is the domain (extending R3 for 3D point
clouds and R2 for 2D images) written as homogeneous coordinates
(with fourth coordinate equal to one). Likewise, let φ ∈ P , where P
extends spherical coordinates S2 × R or polar coordinates S × R,
written in planar representation normal/offset form, where

φp =

 n̂1

n̂2

n̂3

−ρ

 and φl =

 n̂1

n̂2

−ρ

 (1)

Here, n̂ is the unit normal vector while ρ is the offset from the center
of the plane. Throughout the work, depending on what is convenient,

we may also write n̂ in angle form, where n̂p =

(
θ
ω

)
for planes

and n̂l =
(
θ
)

for lines.
Without voxelizing the space (which puts a constraint on resolu-

tion), we require the analysis of a continuous space, we can simulta-
neously determine the Hough spectrum and the best planes based on
a kernel density estimate. The Hough Transform is a mathematical
operator that maps a density function f(x) to a density function in
a functional space (in 3D, traditionally a planar parameterization as
given by Φ):

H{f}(φ) =

∫
D
k(x, φ)f(x)dx (2)

In the case of a finite point set X (with density fX(x)), (2) reduces
to a convolution with the point set over all parameters:

H{fX(x)}(φ) =

∫
R3

k(x, φ)
∑
xi ∈X

δ(x− xi)dx

=
∑
x∈X

k(x, φ) (3)

3.2. Plane Finding with Hough Similarity

Because we wish to cluster points into planes, it makes sense to de-
velop algorithms that make use of kernel functions and kernel ma-
trices, which rely on point-plane similarity. Let us consider the un-
signed point to plane distance,

d(x, φ) = |xTφ|. (4)

Then, we propose the exponential function kh : R4 ×R4 → [0, 1]
to denote similarity:

kh(x, φ) = C exp
(
−d2(x, φ)

)
, (5)

where C =

∫
x∈R3

∫
φ∈S2×R

kh(x, φ)dxdφ.

The kernel function in (5) enables us to use an algorithm similar
to the meanshift algorithm (and potentially other clustering methods
that operate with kernels). Let the multivariate estimate of planes be
the collection of φ where points are assigned with the delta function
as defined by:

f(φ) =
1

N

∑
N

kh(x, φ) (6)

Then, the gradient of the “density estimator” can be calculated as
such:

∇φf(φ) =
2

NC

∑
i

(xTi φ)k(x, φ)

=
2

NC

(∑
i

kh(xi, φ)

)[∑
i xikh(xi, φ)∑
i kh(xi, φ)

− φ
]
(7)

The first term is, of course, the Hough Transform of the data, utiliz-
ing the Hough similarity in (5). The meanshift vector, so to speak, is
the second term in (7):

mh(φ) =

∑
i xikh(xi, φ)∑
i kh(xi, φ)

− φ, (8)

and the algorithm iterates between the computation of the mean shift
vector mh(φt) and the update vector φt+1 = φt + mh(φt), which
finds both modes and cluster centers, or basins of attraction.

1865



4. FINDING THE UP-VECTOR

In order to compare the query data to the reference image, we re-
quire conversion to equal dimensionality to enable comparisons. It
is possible to do so by creating an image of the point cloud projection
onto the ground plane when viewed from above. Doing so requires
knowledge of the up-vector, the cross-product of any two vectors on
the ground plane. We address the determination of that vector, here.

Without voxelizing the space [5] or determining the correspon-
dences explicitly [11], the most straightforward and computation-
ally efficient way to determine a point cloud’s primary orientation is
through an SVD decomposition. Such a procedure done on point-
wise normal estimates would be disastrous as SVD’s are notorious
for their susceptibility to gross errors and mismatches. At issue is
the number of spurious points, and the better option ascribes primary
point cloud direction using PCA to those clusters that have already
been calculated in by kh in Sec. 3.2, where we have integrated out
noise and produced the most salient information.

Let N̂q be a matrix with the normals of the query planes ex-
tracted from Sec. 3.2. Then, let

N̂N̂T = V SV T (9)

Here, V and S are eigenvector and eigenvalue matrices of N̂N̂T .
A fair assumption can be that the up vector will correspond to the
normals that have the least amount of variance (i.e., V3, where S3,3

is small), which may be untrue of every point cloud.

5. REGISTERING TO 2D IMAGERY

By orthorectifying our point cloud in Sec. 4, we have eliminated two
rotation parameters, reducing our problem to a 2D problem. We also
assume that once aligned in 2D, the reference ground plane deter-
mines an additional translation degree of freedom, i.e. the z offset,
tz . There are now four remaining degrees of freedom. Define an
image Iq as the orthorectified image derived in Sec. 4, and Ir as the
reference image. We wish to determine the planar rotation about the
up vector, θ, the scale of the point cloud, α, and the translation tx
and ty . Sweeping over four parameters is computationally difficult,
an O(m4 · n2 · C) task, where m is the resolution of the sweep, n
the number of points, and C the correlation/comparison time, which
can be up to O(n2).

Fortunately, by working with the Hough spectrum, according
to [12], rotation is independent of both translation and scale. Subse-
quently, we have also found that scale can be determined indepen-
dently of translation, meaning that the entire registration task can be
a three-stage sweep over the parameters that would yield no more
than O((m + m2 + m2) · N2 · C) = O(m2n2C) time. From the
remaining dependencies, because order plays a large role in Hough
scan matching; the following subsections calculate (γ, α, tx, ty) in
the correct manner. This section describes the geo-registration ap-
proach in aligning two images, where (with the exception of scale),
we borrow heavily from [12].

5.1. Rotation

The key result in [12] is that a rigid transformation M of an image
I inducing a rotation γ and translation t has the following effect on
the 2D Hough transform of an image:

H{MI}(θ, ρ) = H{I} (θ + γ, ρ+ (cos θ, sin θ)t) (10)

The two conclusions from (10) are:

1. When t = 0, then P translates by γ with no regard for ρ as
ρ does not affect the the first θ dimension of H{I}, i.e., the
right hand side of (10).

2. If γ = 0, the space P bends per θ by tx cos θ + ty sin θ
regardless of ρ.

Result 1 lets us fix t and sweep γ by shifting the spectrum H(q)

and observing when the aggregate H(q) aligns with H(r). That is to
say, the optimal rotation γ∗ can be found by solving

γ∗ = arg max
γ

∑
i

∑
ρ1

H(r)(θi, ρ1)
∑
ρ2

H(q)(θi − γ, ρ2) (11)

5.2. Scale

While Censi et. al. [12] has successfully invented a scan matcher
to solve for both rotation and translation, the issue of scale differ-
ences between images has been largely left alone to the best of our
knowledge. We discuss scale between two images in this subsection.

In actuality, the second dimension in (10) does not have a scale
term. Our assertion is that the full Hough relationship for this di-
mension for matrices M that do not have a spectral norm of 1 (i.e.,
have scale difference α 6= 1):

ρ(r) = αρ(q) + αtx cos θ + αty sin θ (12)

To conceptualize this result, we assume that a large number of lines
in Iq exist in Ir . That is, we assume that building walls in the point
cloud and in the world are drawn to scale in maps. Then parallel
lines can be easily extrapolated by observing all ρ corresponding to
a single θ. The scale parameter α relates to the shrinking or the
growing of the distance between the parallel lines. That is, after
rotation matching, not only is the order of the peaks preserved per θ,
but the distance ratio between the peaks is constant.

To prove this result, let4ρ = ρ1 − ρ2 be the distance between
two peaks in either query or reference image. Then,

4ρ(r) =
(
αρ

(q)
2 + αtx cos θ + αty sin θ

)
−
(
αρ

(q)
1 + αtx cos θ + αty sin θ

)
= α

(
ρ
(q)
1 − ρ

(q)
2 + tx cos θ + ty sin θ − tx cos θ − ty sin θ

)
= α4ρ(q) (13)

Of course, correspondence finding is a difficult problem, and
should we have asserted a ρ1 and ρ2 in both Iq and Ir , the problem
would have already been solved. Alternatively, it is possible to look
at the aggregate distances between peaks. Then, we can sweep α in
such a way that a large number of peaks align per theta. Let pi denote
the peaks of the Hough Transform, H(ρ, θ). Then, the Hough peaks
can be given as follows:

P (ρ, θ) =
∑
i

H(ρ, θ)δ(ρ− pi, θ − θi) (14)

Due to noise and slight misalignments, it makes sense to blur
P by a Gaussian G, where we take the reference peaks in (14) and
produce P̂ :

P̂ (ρ, θ) = P (ρ, θ) ∗ G(0, σ) (15)
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Then, we must solve the following optimization problem:

α∗, τ∗ = arg max
α,τ

∑
i

∑
τ

(
P̂ (r)(4ρ, θi)− αP̂ (q)(4ρ+ τ, θi)

)
(16)

While α must be swept from 0 to a specified or arbitrarily large
value, τ is a fairly small set that is an essential convolution parameter
that exists because planes in the query data set may not necessarily
exist in the reference.

5.3. Translation

Recall that once γ and α have been found, the translation (defined
by ρ) is determined by

t∗ = arg max
t

∑
i

∑
ρ

H(r)(θ, ρ)H(q)(θ, ρ+ tx cos θ + ty sin θ)

(17)
In reality, it is much easier (and computationally efficient) to

convert the calculated peaks back into Euclidean space. This is be-
cause, for every translation, we would need to calculate the Hough
Transform for θ and ρ. We can threshold the peaks to only con-
sider strong edges, take the inverse Hough Transform, and use con-
ventional cross-correlation methods, conveniently obtained off the
shelf. (We used MATLAB’s xcorr.m function.) Note that while
peaks correspond to single lines, thresholded values correspond to
blurred lines, meaning an allowance for noise and loss of precision.
Additionally, where lines intersect, the inverse Hough Transform is
doubly strong, and so corners are considered especially salient.

6. RESULTS

The construction of our point clouds from SfM originate from a
number of bundler codes [1, 13] and dense PMVS [14]. LiDAR
scans were produced by two scanners mounted on a pushcart that
we ran through MIT campus. Additionally, we aligned a Colosseum
data set, [10] and others. Ground-based point clouds were aligned
to two 2D sources: Google MapsTM(using feature that allows omis-
sion of names and other text) and orthoprojected aerial LiDAR of the
same area. See example sets in Fig. 1 1.

The proposed algorithm is compared against state of the art on
the Colosseum [1, 10], MIT Kendall, and Texas [15] where we at-
tempt to make the tests as fair as possible 2. In many cases, a prepro-
cessing step was required (to exaggerate edges in the images.) With
ICP, we initialized both to relatively correct positions. With Censi,
we did not introduce scale sweeps. Additionally, when comparing to
Censi, we did not sweep the entire space, but rather, only the space
where planes exists, reducing our computational cycles considerably.

Scale turned out to be an especially difficult parameter to deter-
mine; Kaminsky’s estimate yielded α ≈ 1.25α∗ on the MIT data
set(here, α∗ = optimal scale.) The parameter sweep in the proposed
algorithm produced an α ≈ 1.12 × α∗, which is still significant
because translation (Sec. 5.3) depends on α. With the exception of
α, the accuracy of the proposed algorithm is unrelated to the sever-
ity of rotation and translation (i.e., initialization). ICP results look
good because we provided several initializations. Censi’s algorithm
takes more time than the proposed algorithm, but achieves roughly
the same error rate as the underlying results.

1Dense reconstruction via PMVS [14] shown in Fig. 1; for computational
purposes, we compared only sparse points [1].

2Censi’s algorithm is implemented in MATLAB with several for loops; it
is un-optimized.

(a) Aligned clouds from disparate sources

(b) Kaminsky (c) Scan Matching

Fig. 2. Results visualization: (a) Left: aerial LiDAR; Right: ground
SfM to ground LiDAR (not discussed, but easily done). (b) Kamin-
sky et. al. technique using Google Maps image through edge filter.
(c) Proposed technique (rendered above satellite imagery).

Ground Photos
to Google Maps

Ground Photos
to Aerial LiDAR

Ground LiDAR
to Google Maps

ICP [3] (·, 0.14, 1.8m) (·, 0.375, 1.0m) (·, 0.152, 1.6m)
Censi [12] (·,0.13,2.9) (·, 0.22, 2.27m) (·, 0.22, 1.35m)
Kaminsky [10] (0.25,0.27, 3.4m) (0.27, 0.12, 3.4m) -
Proposed (0.15, 0.13, 3.9m) (0.22, 0.14, 2.0m) (0.1, 0.21, 1.4m)

Table 1. Registration Error Comparisons (RMSE, meters)

Ground Photos
to Google Maps

Ground Photos
to Aerial LiDAR

Ground LiDAR
to Google Maps

ICP [3] 0.23min 0.32min 1.36min
Censi [12] 27.5min 29.57min 252.3min
Kaminsky [10] 16.01min 15.24min -
Proposed 3.25min 3.24min 6.57min

Table 2. Computational Complexity Comparisons (seconds)

Table 1 defines error as an `2 norm of optimal parameters (per-
haps not the most intuitive metric, but relatively unbiased). The three
numbers denote ‖ • − •∗ ‖2, where • can be α,R, or t. Table 2
excludes plane finding comparisons. ICP starts from a good initial-
ization and converges quickly; the results are for an individual ini-
tialization. Several methods omit certain parameters; the aggregate
results can be interpreted at the reader’s discretion.

7. CONCLUSIONS, FUTURE WORK

We have proposed a methodology to register a 3D point cloud to a
semantic map in a computationally efficient manner. There is con-
siderable opportunity to work toward an overarching framework for
geo-registering point clouds, images, and other sources.
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