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ABSTRACT

This work deals with the definition of a framework for inter-
preting, modeling and classifying sequences of body move-
ments into a pre-defined vocabulary of actions. Starting
from sequences of volumetric reconstructions of the actor
pose in each frame, we split action recognition into three
separated tasks. The first task is the representation of the
four-dimensional patterns reconstructed from each sequence,
the second task is the extraction of motion descriptors, and
the third task is the classification into action classes. In par-
ticular, we extract the curve skeleton from the reconstructed
volumes in order to underly the actor movements and to
reduce the system dependence from the actor gender and
the body shape. The proposed method increases the action
recognition rate.

Index Terms— Action recognition, Motion History Vol-
ume, Morphological Thinning, Hessian Invariant Descriptor

1. INTRODUCTION

Human action/gesture recognition is an important and chal-
lenging topic in Computer Vision, with many fundamental
applications including video surveillance, video indexing and
social sciences [1]. In this work, we investigate how to build
models of human actions for categorization and recognition
of simple action classes, independently from viewpoint, ac-
tor gender and body sizes. We use sequences of volumetric
reconstructions of the actor poses performed in each frame.
The choice of a 3D representation has several advantages over
a single, or multiple, 2D view representation. A 3D represen-
tation: (i) is more informative than simple sets of 2D images,
since additional calibration information is taken into account;
(ii) is more robust to the object position relative to the devices,
as it replaces a possibly complex matching between learned
views and the actual observations by a 3D alignment; (iii) al-
lows different device configurations.

We develop and apply a novel 3D thinning algorithm that
extracts the curve skeleton of the reconstructed volume. A
curve skeleton is a one-voxel wide representation of a 3D ob-
ject and it provides a compact and expressive characterization

of the solid. We experimentally demonstrate that this tool
underlies the actor movements and reduces the system depen-
dence from the actor gender and body shape.

The paper is organized as follows. First, we recall some
works related both to action recognition and to skeleton ex-
traction (Section 2). In Section 3, we present an efficient
representation of the action pattern based on the proposed
thinning algorithm and the Motion History Volume [2]. In
Section 4 the extraction of features invariant to position and
orientation is described. Section 5 proposes the classification
procedure. In Section 6, we discuss the obtained results. Con-
clusion ends the paper (Section 7).

2. RELATED WORKS

Inside the human action recognition systems that work from
multi-viewpoint sequences, a first class of solutions extracts
motion descriptors directly from videos. Such descriptors are
not invariant to viewpoint, which can be partially resolved by
multiplying the number of action classes by the number of
possible viewpoints [3], relative motion directions [4], and
point correspondences [5]. This leads to a poorer catego-
rization and to an increased complexity. Problems such as
viewpoint dependence and motion ambiguities are inherently
solved by performing a volumetric reconstruction of the scene
prior to the feature extraction and classification stages. A vol-
umetric reconstruction of the human body is used by Trivedi
et al. for the purpose of fitting a human body ellipsoid model
[6]. Even if a gesture can be defined as a time series of body
joint configurations (poses), the pose estimation is not strictly
necessary in order to classify actions. Weinland et al. [2]
propose a representation based on Fourier analysis of Motion
History Volumes (MHV) in cylindrical coordinates, to build
free-viewpoint invariant motion descriptors.

There are many algorithms in the literature describing
curve skeleton extracting methodologies for different ap-
plications [7]: thinning [8], distance transform-based [9],
geometric [10] and general field function-based [11] meth-
ods. The thinning process is usually very fast and produces
a skeleton that is topologically equivalent to the object. Dur-
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Fig. 1. Examples of (a) reconstructed volumes from the ac-
quisition system [20]; (b) curve skeletons extracted with the
Palágyi and Kuba algorithm [12]; (c) curve skeletons ex-
tracted with the proposed algorithm; (d) volumes recovered
with the proposed algorithm.

ing the thinning process, border points of a binary object,
that satisfy certain topological and geometric constraints,
are deleted in an iterative procedure. There are several sub-
classes of thinning methods based on how detachable points
are detected and considered for removal. In particular, the
n-Subiteration (or directional) algorithms divide each itera-
tion into n subiterations. In each subiteration, only border
points of certain kind can be deleted simultaneously. Since
there are six kinds of major directions in 3D (see Section 3),
6-subiteration algorithms were generally proposed [12], [13].

3. ACTION REPRESENTATION

In the discrete space Z3, each point p = (x, y, z) is called
voxel. It can be viewed as a cube, having 6 faces, 12 edges,
and 8 corners. The original voxel set (A) is the volumetric
reconstruction of the actor pose performed in a frame. This
voxel set is approximated and substituted using the proposed
Thinning & Reconstruction procedure: a ball growing repre-
sentation computed on the extracted curve skeleton. Com-
puting the MHV, not on the original voxel set (A) (as pro-
posed in [2]) but on the reconstructed volume (R), underlies
the body parts involved during the movement and reduces the
body shape dependence of the representation.

3.1. Curve Skeleton

3D thinning is a morphological operator which aims at re-
moving external foreground voxels in order to reduce the
thickness of objects. The thinning of a set A by a structuring
element SE, denoted by A⊗ SE, can be defined in terms of
the Hit-or-Miss Transform [14]:

(SE1
U ) (SE2

U ) (SE3
U ) (SE4

U )

Fig. 2. Base structuring elements SE1
U − SE4

U belonging to
the deletion direction U.

A⊗ SE = A− (A~ SE) = A ∩ (A~ SE)c, (1)

where ~ denotes the Hit-or-Miss operator. The structuring
element origin scans each voxel of A and, if there is per-
fect overlap between the neighboring voxels with those of the
structuring element, the voxel on which the structuring ele-
ment lays is set to 0 (empty) otherwise it is left at 1 (full). The
voxels of a structuring element are described by four kinds of
values: “1” means full, “0” means empty, “x” means “do not
care” and “.” means that at least one point marked “.” is full.

The usual process is to thin A using a sequence of struc-
turing elements {SE} = {SE1, SE2, ..., SEn}:

A⊗ {SE} = ((...((A⊗ SE1)⊗ SE2)...)⊗ SEn). (2)

Starting from the idea of Palágyi and Kuba [12], we im-
plement a 6-subiteration 3D thinning algorithm. Our inno-
vative contribution is the definition of new structuring ele-
ments in order to obtain a curve skeleton with few periph-
eral branches (Fig.1 (b)-(c)). We obtain a curve skeleton that
is: homotopic with the original object, geometrically centered
within the object boundary, close to the object shape, smooth,
robust to noise on the surface, and fast to compute.

Considering the canonical space, right handed oriented,
we call U and D the extremes, negative and positive respec-
tively, of the y axis, W and E the extremes, negative and pos-
itive respectively, of the x axis, and S and N the extremes,
negative and positive respectively, of the z axis. The 6 sub-
iterations are sequentially applied following the directions:
U, W, S, D, E, and N and iterated until no more points are
deleted. The thinning in the U direction, is computed follow-
ing Eq. 2 with structuring elements {SEU}. The structuring
elements SE1

U − SE4
U assigned to the direction U are given

in Fig.2. Additionally, all rotations of 90◦, 180◦ and 270◦

around the U-D axis of the base elements SE1
U − SE4

U are
structuring elements too. Deletion conditions assigned to the
directions W, S, D, E and N, can be derived from the appro-
priate rotations of the structuring elements in {SEU}. Two
examples of 3D curve skeletons extracted using the proposed
algorithm are shown in Fig.1 (c).

3.2. Volume representation

Once the curve skeleton is extracted, the reconstructed voxel
set (R) is computed using a ball growing approach. First the
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Fig. 3. Examples of Motion History Volumes of the actions:
(a) open, (b) kick, (c) march.

object surface (S) is extracted with a 3D morphological di-
latation with a 3 × 3 × 3 structuring element and then by
subtracting the original 3D object (A) to the result. After that,
the distance of each skeleton-voxel to the nearest point on the
surface is computed and finally the skeleton-voxel is substi-
tuted with a discretized ball with center equal to the skeleton-
voxel and with radius equal to the estimated distance to the
surface. Two examples of reconstructed 3D frames are shown
in Fig.1(d).

3.3. Motion History Volumes

Motion History Volume (MHV) represents the extension of
Motion History Image, introduced by Bobick et al. [3] to
capture motion information in images. MHV encodes the
history of motion occurrences in the 3D space. Applying
the aforementioned T&R procedure, the occupancy function
D(x, y, z, t) is obtained: D = 1 if the 3D point p = (x, y, z)
is occupied at time t and D = 0 otherwise. Considering
D(x, y, z, t), the MHV is defined as [2]:

vτ (x, y, z, t) =

 τ ifD(x, y, z, t) = 1
max{0, vτ (x, y, z, t− 1)− 1}

otherwise
. (3)

In order to loose the dependency on the absolute execution
speed, the templates are normalized with respect to the dura-
tion of an action:

v(x, y, z) =
vτ=tmax−tmin(x, y, z, tmax)

tmax − tmin
(4)

where tmin and tmax are start and end time of an action. Fig.3
shows three examples for Motion History Volumes computed
on three sequences representing three different actions.

4. MOTION DESCRIPTORS

Our purpose is to compare body motions that are free in lo-
cation, orientation and size. The location and scale depen-
dencies can be removed by centering, with respect to the cen-
ter of the mass, and by scale normalizing, with respect to a
constant variance, motion templates, as it is usual in shape

matching. The rotation dependence can be removed by using
Fourier based features and by choosing coordinate systems
that map rotations onto translations [2]. Using invariant mo-
tion descriptors is advantageous, because we do not need to
align training examples for learning a class model, or to align
test examples with all the class prototypes for recognition.

We express the motion templates in a cylindrical coordi-
nate system (r, θ, z):

v
(√

x2 + y2, tan−1
(y
x

)
, z
)
→ v(r, θ, z), (5)

where (r, θ, z) are the coordinates of the point p = (x, y, z)
in the cylindrical coordinate system representing respectively
radius, azimuth angle, and height. Thus, a rotation around the
z-axis (of an angle equal to θ0) results in a cyclical translation
shifts along the azimuth angle axis.

Calling v the volumetric cylindrical representation of a
motion template, as defined in Eq.4, we consider the point
cloud composed by all the voxels that represent a time step,
i.e., for which v(r, θ, z) > 0. We compute the mean µ and
standard deviations σr and σz in r- and z-direction. The tem-
plate is then shifted, so that µ = 0, and is scale normalized
so that σz = σr = 10. We choose to normalize in z and r
directions focusing on the main directions human differ on,
as suggested by Weinland et al. [2].

In order to construct a feature descriptor that is invariant to
a rotation around the z-axis, instead of using only the modulus
of the Fourier transform as in [2], we implement a Hessian
Invariant Descriptor (HID) on the 1D Fourier transform:

V (r, kθ, z) =

∫ π

−π

v(r, θ, z)e−j2πkθθdθ, (6)

for each value of r and z. The idea behind the HID [15] is to
differentiate the phase spectrum twice to eliminate the linear
phase terms that is the only difference between a motion tem-
plate and its rotated counterpart. The invariant parts are then
the modulus of the spectrum |V | and the second order partial
derivative, respect to kθ, of the phase spectrum φkθkθ

:

FH (r, kθ, z) = [|V (r, kθ, z)| , φkθkθ
(r, kθ, z)] . (7)

The main advantage of the HID, with respect to the absolute
value of the Fourier Transform alone, is that it does not avoid
completely the phase information. The 1D-Fourier magnitude
is ambiguous with respect to the reversal of the signal. Conse-
quently, motions that are symmetric to the z-axis (e.g., move
left arm-move right arm) result in the same motion descrip-
tors. This is a loss in information that can be avoided using
the HID.

5. ACTION CLASSIFICATION

In this section we illustrate the classification process using
Linear Discriminant Analysis (LDA) for dimensional reduc-
tion [16], combined with a minimum Mahalanobis distance
classifier [17].
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Table 1. Action classification results (percentages). Results
based on PCA [2], LDA, and T&R + LDA methods are pre-
sented.

Action PCA (%) LDA (%) T&R + LDA (%)

Open 100 100 100

Kick 100 100 100

Walk 76.19 90.48 100

Crouch 90.48 100 100

Grasp 100 100 100

March 100 90.48 100

PointAt 85.71 95.24 100

Push 95.24 100 100

MoveRt 71.43 80.95 100

Pull 100 100 100

Average Rate 91.9 95.71 100

In order to reduce the vectors dimensionality, we use LDA
that projects data through a linear mapping that maximizes
the between-class variance while minimizes the within-class
variance. When the size of the original feature space D is
much larger than the number of vectors available for training,
the within-class scatter matrix is singular, so not invertible.
To address this problem, we follow the approach proposed by
Huang et al. [18] which belongs to the class of approaches
in the null-space. The basic idea is to maximize the extended
Fisher criterion [16]:

F̂ (w) =
wTSBw

wTSBw +wTSWw
, (8)

where SW is the within-class covariance matrix and SB is
the between-class covariance matrix. Each w, such that
wTSWw = 0 while wTSBw ̸= 0, maximizes the function
F̂ (w) [19]. These vectors belong to the null-space of SW .
However not all the null-space of SW is needed [16]: it is
necessary to eliminate the null-space of St, which is the in-
tersection between the null-space of SW and the null-space
of SB . Then, in the complementary subspace, the null space
of the new within-class scatter matrix is computed. In this
subspace the vectors that maximize the distance between
different classes are estimated.

Classification is realized using a Nearest Class Centroid
Classifier: it assigns the test vector to the class c of the gallery
vector from which the Mahalanobis distance is minimal.

6. RESULTS

We test the proposed action classification system with a
database of actions developed in our laboratory, as described

in [20]. It is composed by 10 different actions, each per-
formed 5 times by 5 actors (different bodies and different
orientations). The dataset is available at [20]. The main as-
sumptions, taking the Efros et al. table as a reference [21],
are: the subject remains inside the workspace during the
whole capturing process; only one subject is present in the
workspace at a time; gestures can possibly involve the whole
body; no occlusion occurs in the acquired scene except self
occlusions. A leave-one-out cross validation is implemented,
where we successively use 4 actors (1 sequence for each
performer and action) to learn the motions (40 sequences in
total) and the other sequences (210 in total) for testing. One
actor is not present in the sequences used for learning.

We compare our method with the method proposed by
Weinland et al. [2] that use MHV and Principal Component
Analysis (PCA) for classification. We obtain an average clas-
sification rate of 0.9190 with their method, with respect to
a rate of 0.9571 using LDA applied on the original MHV
and to a rate of 1 using the proposed method (T&R+LDA).
Moreover, the original descriptor (Eq.7) is reduced from D =
262144 to d = 9 components using LDA.

The detailed results, given in Table 1, show, first of all,
that the implemented classification method outperforms the
classification method based on PCA, because PCA can cut
some useful information. Moreover the T&R procedure re-
duces the body shape dependence, incrementing the similarity
between movements even if performed by actors with differ-
ent gender or different body structure.

7. CONCLUSION

In this paper we propose an Action Classification process,
having the 3D human body reconstructions available for each
frame. The developed T&R morphological procedure allows
to obtain a better representation of the human body, highlight-
ing the movement and reducing the body shape dependence.
Its application increments the similarity between movements,
even if performed by actors with different gender or differ-
ent body structure. In order to obtain the invariance under
rotation around the z axis, we employ the Hessian Invariant
Descriptor: considering the voxel set in cylindrical coordi-
nates, a rotation around the z axis can be tackled considering
the module and the phase second order derivative of the 1D
Fourier Transform respect to the kθ axis. We demonstrate
that, using the designed morphology operators, the perfor-
mance greatly improves till 100% success in action classifica-
tion. We would like to test our method on a bigger database,
having a greater number of actions and a bigger number of
performers.
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