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ABSTRACT

A finger-written, camera-based, hand gesture recognition frame-
work for English letters in an in-vehicle environment based on
Hidden Markov models is proposed. Due to the nature of the con-
strained hand-movement situations on the steering column, we are
confronted with at least two challenging research issues, namely
varying illumination conditions and noisy hand gestures. The first
difficulty is alleviated by utilizing the contrast for background-
foreground separation and skin model adaptation. We also adopt
sub-letter stroke modeling to reduce the noisy frames of the be-
ginning and ending parts of the letter gestures followed by the
trajectory re-normalization . Moreover, the geometric relationship
between letter pairs is also utilized to distinguish highly confusable
letters. Finally, score fusion between whole-letter and sub-stroke
models can be used to further improve the performance. When
compared with the baseline system with simple features, our ex-
perimental results show that an overall relative error reduction of
66.03% can be achieved by integrating the above four new pieces of
information.

Index Terms— Hand gesture, letter recognition, skin color de-
tection, stroke modeling, Hidden Markov models

1. INTRODUCTION

User interfaces for in-vehicle instrument control require not only
good user experience but also minimal distraction due to safety rea-
sons [1]. While most systems were done by control knobs or touch
screens with proper displaying systems [2, 3] for user interactions,
multiple modalities, such as speech and gesture recognition, also
draws recent attentions [4, 5]. In such hands-busy and eyes-busy
input conditions, gesture input plays a key role to speech input due
to their complimentary nature. In this work, hand gestures of finger-
written English letters for in-car environments are studied.

The first challenge for in-car hand gesture recognition is due to
varying illumination conditions. Most generic gesture recognition
systems are built for in-door environments [6, 7, 8, 9, 10]. Different
color space representations [7], skin regions versus non-skin regions
classification rules [8], automatic white balance calibration [6], or
depth information [9] are often used to deal with the cluttered en-
vironmental conditions. Due to strong diversities for in-car envi-
ronments, even with these solutions, the detection can still be quite
challenging. Therefore, other hardware solutions like active lamp
[11] is often used.

The second challenge for in-car hand gesture recognition is how
to model the hand gesture. Most generic gesture recognition systems
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use sequential modeling techniques such as Hidden Markov Model
(HMM)[8, 12] or Finite State Machine (FSM)[13]. The main chal-
lenge for in-car environment is its gesturing diversities. Since a user
may put more attention on driving instead of looking at his or her
own gesturing hands. These gestures are expected to be more noisy
and may have meaningless gesture components such as making a
long starting stroke before actually beginning to perform the real
gesture. Directly normalizing the whole gesture like [14] may cause
the meaningless strokes to be misunderstood as part of a gesture.

In this work, we developed solutions for both challenges. For
the first challenge, in order to deal with the diversities encountered
under in-car environment, we use our previously proposed adaptive
skin detectors [15]. The main idea for this detector is to use both the
corresponding background and foreground information along with
Maximum a Posteriori (MAP) [16] adapted skin models to enhance
the detector performance and robustness.

For the second challenge on modeling, besides the whole letter
modeling, we utilize the stroke modeling. The idea of the stroke
modeling is similar to the stroke modeling for the hand writing Chi-
nese character recognition [17, 18, 14] or the phoneme modeling for
speech recognition [19]. The stroke modeling may be able to take
care of some gestures with different stroke orders. Furthermore, the
stroke modeling enables the possibility to increase the discriminative
power by explicitly modeling the intra-stroke correlation with geo-
metric properties as a post processing stage, and it also has the po-
tential to remove noisy strokes. Experimental results showed these
advantages can be verified and these two practical challenges are ef-
fectively addressed.

2. RELATION TO PRIOR WORK

Most of the previous gesture recognition systems addressed issues
of the object detection and the gesture recognition itself as two sep-
arate problems. That is, the input gesture frames must go through
some feature extraction modules to produce some feature vectors for
gesture models. The importance of the first challenge mentioned in
Section 1 is that a bad object detector can often result in a noisy sets
of feature vectors.

To design a robust hand or body part detector for human gesture
recognition, there are two aspects of concerns. The first is mainly on
the signal acquisition side. During the collection of the data set [6],
automatic white balance calibration is first used to adjust the color
distribution, but a postprocessing stage is still required. In an in-car
gesture recognition designed in [11], LED light is used to minimize
the effect of different illumination conditions. Infrared camera can
also be used to obtain the depth information [9] so that the fore-
ground object can be reliably extracted.
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Besides hardware solutions for cluttered environments, other is-
sues are related to the skin color detection. For example, in [11, 8],
more specific thresholding rules are applied. Other side informa-
tion, such as motion and edges, is also proved to be useful for better
detection results [8]. The effect of different color space represen-
tation and skin color models are discussed in [20] for hand detec-
tion, and it turns out that different color spaces are recommended in
different application domains and models. Color tracking using an
Expectation-Maximization (EM) type algorithm is shown to be use-
ful [21] while adaptive techniques based on refining the model with
false detection samples are also proposed in [22] to enhance the skin
detection performance.

However, none of these methods directly use the fact that the
detection target is from a sequence of frames. In our previous work
[15], we explicitly included the background and foreground corre-
lation into our skin detection modeling. Besides that, we used the
Maximum a Posteriori (MAP) adaptation [16] to adjust the model
conditions so that the mismatch between the training recording envi-
ronment and that of the testing data can be reduced. With this algo-
rithm, no hardware calibration or a carefully designed thresholding
rule is required.

In addition to the skin detection, modeling of the extracted fea-
tures is another important issue. The most commonly used tools
are based on sequential modeling, such as HMMs [8, 12] or FSMs
[13], which is more flexible than HMM. In these previous studies, a
whole gesture is modeled by a single HMM or FSM, and the model
that gives the highest score will be chosen as the recognized ges-
ture. Typical input features for these application may involve po-
sition, velocity, and orientation [10]. However, for the recognition
inside a car, a gesture can be noisy because the user didn’t actually
look at the gesture during writing. Furthermore, for gestures, such
as English letters, one gesture may have several different ways of
writing. Thus it needs more effort to collect the data for several dif-
ferent stroke orders for each letter. This motivates our study of stroke
modeling.

Strokes are often used in the community of Chinese or other
Asian written character recognition [17, 18, 14] in several different
ways. This is due to its infeasibility to individually collect and model
thousands of commonly used characters. Therefore, a lexicon is de-
fined to regulate the way to compose a character with strokes similar
to [23]. The same stroke from different characters can be shared to
train a better stroke model. For the in-car gesture recognition, how-
ever, the main difference is that the extraneous movements between
meaningful strokes will also be recorded and they may not be easily
distinguished.

To deal with the difference between in-car stroke modeling and
written text stroke modeling, we treated the intermediate strokes as
meaningful strokes while building the lexicon. With this framework,
the meaningless beginning and ending strokes of the gesture can be
handled and re-normalization of meaningful strokes can be done ac-
cordingly. In addition, we may also incorporate the stroke relation-
ship modeling by some geometric properties. Finally, a score fusion
with the original whole-letter model is also applicable.

In summary, advantages of the proposed framework over prior
arts are as follows:

1. Use the background and foreground information and adapta-
tion to produce good hand detection;

2. The strokes can be trained with more effective training data;
3. It can potentially increase the discriminative power:

(a) By removing meaningless strokes;
(b) By explicit model the relationship among stroke;

4. Give flexibility to future data with different stroke order.

In the following we describe our hand gesture recognition sys-
tem for the English letter recognition in detail, as shown in Fig. 1.
After gesture frames are acquired by cameras, they are passed to the
hand detection module, and its resulting region information is then
fed to the trajectory understanding module to perform the actual ges-
ture recognition. Our proposed techniques to address the two main
difficulties for the in-car gesture recognition will also be presented.

Fig. 1. Conceptual block diagram of the hand gesture recognition

3. HAND DETECTION ALGORITHM

3.1. In-Car Environmental Issues

As mentioned in Section 2, we applied the color information as a
main clue for the hand region recognition. Unlike previous stud-
ies, we mainly focused on the in-car gesture recognition, concerning
the various illumination conditions. Due to different illumination,
reflection, and saturation, it is clear only using the color informa-
tion may not be able to easily distinguish hands from background
regions.

3.2. Proposed Solution for In-Car Hand Detection

We use our previously proposed algorithm [15] to deal with the is-
sues encountered under in-car environments. As mentioned in Sec-
tion 2, the goal is to integrate the background-foreground informa-
tion to assist the MAP adapted skin color models. The algorithm is
composed of the following steps:

1. Assume a purely background frame is always given, for the
whole sequence, check the total variance σ by averaging the
squared difference between every pixel of each frame and the
background frame, if σ exceed some threshold, the frame is
claimed to be a candidate frame with hand object.

2. For each local patch with selected block size (4×4, for exam-
ple), compute magnitude of the block correlation coefficients
|ρ | with the corresponding background block.

3. Doing the MAP adaptation on the original color skin model.

4. Compute the MAP adapted log likelihood score LL of the cur-
rent block’s average RGB value. And scale the likelihood
score LL to NLL = 1/{1+ exp[−0.5× (LL)+0]}.

5. Combine |ρ| and NLL into a two dimensional vector, use a
fusion classifier trained by these feature on the training data
to make the final hand detection.

The goal of the third step is to reduce the model mismatch be-
tween the training and testing data. And the fifth step is used to
combine both the background-foreground relationship with the color
information, so that robustness across different illumination condi-
tions can be achieved.

4. GESTURE MODELING

4.1. In-Car Gesture Modeling Issues

Although most traditional gesture recognition systems use HMMs
as their primary modeling tool [12, 8], there are still some issues not
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considered, just as mentioned in Section 2. Beside detection issues,
users performing in-car gesture will not intend to perform gestures
in a fixed region. That is, given a surface for doing gesture, like area
near steering wheel, users may perform the gesture at any part of that
surface, while meaningless gesture components in the beginning or
ending of that gesture will also be captured.

In addition, previous techniques using HMM type tools should
follow the Markov assumption, that is, only the relation between
two immediate adjacent states or strokes will be explicitly modeled.
Other stroke relationship, though not directly related to the stroke
transition, may still have some discriminative power for the gesture
recognition system. In this work, we will also address this issue.

In the following sub-sections, we will discuss several algorithms
for in-car gesture modeling.

4.2. In-Car Gesture Modeling Algorithms

4.2.1. Whole Letter HMM

The most intuitive baseline system used the normalized position, ve-
locity, and acceleration information as input vector sets o for HMMs
with continuous state observation probability densities. The log like-
lihood score for the i− th English letter can be computed as:

log[P(o|Λwhole word
i )]. (1)

4.2.2. Stroke HMM

A lexicon is first defined for each English letter gesture. For exam-
ple, letter P is defined as {START,↓,↑,⊃ ,END}. Multiple stroke
sequences are also possible, but we only used one stroke sequence
per letter in this study. With each stroke modeled by an HMM with
the same set of features but with a smaller number of states, the log
likelihood score for the ith letter can be computed as:

log[P(o|Λstrokes
i )] = ∑

k∈Di

log[P(o|Λstroke
k ∩Λi)], (2)

where Di is the stroke set allowed for the i− th letter defined in the
lexicon. An example segmentation result is shown in Fig. 2.

Fig. 2. An example of segmenting a letter with stroke HMM, lines
with different colors are strokes decoded.

4.2.3. Stroke HMM with Two-Pass Decoding for Re-Normalization

As mentioned before, in-car gestures may include irrelevant starting
and ending strokes, as shown in the left sub figure of Fig. 3. These
strokes need to be removed and the meaningful gesture parts need to
be re-scaled afterward because these varying length strokes can bias
the gesture model. In order to cope with this issue, we use HMMs
in a two-pass manner. We first use the HMMs with START and
END models for decoding, and then remove these strokes and re-
normalize the remaining position vectors, and pass the re-normalized
vectors to a new set of HMMs without START and END. As shown
in the right part of Fig. 3, this strategy works well.
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(a) Original Trajectory
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(b) Re-Normalized Trajectory

Fig. 3. An example of applying two-pass decoding on the trajec-
tory. The starting and ending part of the trajectory are effectively
removed. Note in (a), the red solid lines are the meaningful strokes

4.2.4. Two-Pass Stroke HMM with Geometric Information

All previous configurations did not consider the explicit relation
among strokes. By considering relationship among any two strokes,
with the assumption of uniform stroke distribution, and considering
the fact of probability scale differences, the modified score function
for i− th letter can be written as:

g(o|Λi) = ∑
k∈Di

log[P(o|Λstroke
k ∩Λi)]+

γ ∑
k,h∈Di

k ̸=h

log[P(o|Λgeometric
k,h ∩Λi)], (3)

where γ is a positive constant with a typical value in the range of
[0,1]. NOW we summarize the final two-pass algorithm as follows:

Algorithm 1: Two-pass letter recognition
input : sequence of position vectors o

letter models with starting/ending strokes Λ
letter models without starting/ending strokes Ξ

output: recognized English letter
for Ξi ∈ Ξ do

compute log[P(o|Ξi)]
end
stroke sets← argmax

ξ∈Ξ
{log[P(o|ξ )]}

// N : scale normalization function
o−←N {o− starting & ending strokes}
for Λi ∈ Λ do

compute log[P(o−|Λi)]
end
return argmax

λ∈Λ
{log[P(o−|λ )]}

In practical application, instead of picking up the maximum
score over all candidates, we only choose two candidates with the
first and second highest stroke scores. According to our observation,
these candidates will give relatively big counts in the confusion ma-
trix, so they are the confusion pairs to be considered. Furthermore,
we also observed if geometric properties are not strong enough,
fusing the whole letter score can be helpful, as will be discussed
soon.
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Table 1. Summary of Different Modeling Strategies

Configuration Error Rate(%)
Whole-letter HMM (naı̈ve skin model, baseline) 24.62
Whole letter HMM (MAP-adapted skin model) 12.57
Stroke HMM 12.73
Stroke HMM (+Re-normalization) 9.91
Stroke HMM (+Geometric) 9.17
Stroke HMM (+Whole letter fusion) 8.36
Stroke HMM (2-best) 5.54

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

We used a PointGray Dragonfly 2 camera with YUV 422 color and
1024×768 setup at 15 frames per second and 10 ms shutter speed.
The acquired frames were first resized to a 256× 192 to save storage
spaces. We collected data from 17 different users and spread the
sampling time over morning, noon, and evening sessions for all. A
set of about 5,000 gesture sequences was recorded. To verify the
proposed framework, the following experiments were conducted:

1. Test the performance of adaptive hand detector (Section 3.2)
over naı̈ve one.

2. Compare the stroke HMM (Section 4.2.2) and the whole-
letter HMM (Section 4.2.1).

3. Check the impact of the stroke normalization (Section 4.2.3)
and adding simple geometric information (Section 4.2.4).

Within this set 4,211 sequences, with the most commonly seen
stroke order used for each of 26 letter gestures, were picked for eval-
uation. Half of the data for each letter and recording condition were
used for training and testing. After trials and errors on the baseline
system, 16-state single-mixture and 2-state 32-mixture HMMs were
used for whole-letter and stroke modeling, respectively. To make a
fair comparison among different configurations, we only evaluated
the systems on a subsets of 1,877 gesture sequences with more than
16 frames of hand motion. Input to all models were sets of vectors
composed of position with both axes normalized into the range of
[0,1] and corresponding velocity and acceleration.

5.2. Experimental Results

5.2.1. Whole-letter Modeling

With the recommended parameter setting and the baseline system
mentioned in Section 4.2.1, we characterized the skin and non-skin
models by Gaussian mixture models (GMMs) [24] with mixture
counts determined by the technique in [25]. Then the proposed
adaptive algorithm based on our previous work can significantly
reduce the recognition error rate by 48.94% relatively, as shown in
the first two rows of Table 1.

5.2.2. Sub-letter Stroke Modeling

Again, the recommended parameter setting was used, and testing
was done on the same subset of data used in testing whole-letter
models. We can see that the error rate for stroke modeling was
12.73%, which was comparable with 12.57%, produced by the
whole-letter modeling, as shown in the 2nd and 3rd rows of Table 1.

One reason for this slight degradation in performance could
come from the fact that the current stroke modeling was based on
the same feature set as those used in whole-letter modeling. For
example, both arcs in letter B were used to model the arc stroke that
appear in B, P, R without considering their relative positions to the
whole letter, this would make the resulting model not as stable. To
enhance the stroke modeling, we adopted position re-normalization
and added simple geometric information next.

5.2.3. Position Normalization and Letter Geometry

With gesture modeled by strokes defined in a lexicon, as shown in the
3rd and 4th rows of Table 1, applying the two-pass re-normalization
scheme as proposed in Section 4.2.3 we reduced the error rate
to 9.91%, a 22.15% relative error rate reduction over the original
position-independent stroke models.

In addition, we applied the following geometric indices and used
Equation 3 and Algorithm 1 for the letter recognition:

• Distances between endpoints from either stroke.
• Distances of stroke endpoints to the line connected by end-

points of the other stroke.
• Distance of the middle point of a stroke to the line connected

by endpoints of the other stroke.
• Cosine value of two lines formed by endpoints of either

strokes.
We only considered the letter candidates with the first and sec-

ond highest stroke model scores. We can see that this setup with
γ = 0.08 can further improve the performance by 7.47% and 27.97%
relatively over the re-normalized and original stroke models, respec-
tively, as shown in the 3rd , 4th, and 5th rows of Table 1. Moreover, by
adding corresponding scores from the original whole letter models
with weight (1,0.08,0.5), we can further reduce the error rate from
stroke models with geometric properties to the best performance of a
8.36% error rate, which represents a 66.03% relative error reduction
from the baseline whole-letter system.

Furthermore, if we considered the setup in Section 4.2.3 but al-
lowed any hit from candidates with the 2 highest scores as a cor-
rect recognition, i.e., 2-best, we can have a much lower error rate of
5.54%. This makes application design easy when additional infor-
mation such as a dictionary can be integrated into the figure-written
letter recognition systems and also implies a potential improvement
by using more discriminative geometric properties.

6. CONCLUSION AND FUTURE WORK

In this work, we deal with challenges encountered under in-car en-
vironments for the English letter hand gesture recognition. We alle-
viate the first challenge of varying lighting condition by integrating
the background-foreground information and the adaptive skin color
modeling. For the challenge of proper gesture modeling, we in-
vestigating the stroke modeling and designed a two-pass decoding
algorithm and showed its effectiveness to remove the meaningless
starting and ending strokes that constantly seen for in-car hand ges-
tures. We then integrating the geometric properties to further reduce
the error rate. Finally, by further fusing this model with original
baseline score, a relative 66.03% error reduction compared to origi-
nal HMM baseline is achieved. Moreover, the performance gap still
exists when compared to the 2-best scenario. Therefore, geometric
properties among strokes with better discriminative power and other
stroke properties should be further studied, especially for easily con-
fused letter pairs.
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