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ABSTRACT

We propose a method for object reconstruction from images
obtained by a plenoptic camera. Our approach exploits a
plenoptic system model based on diffraction analysis in or-
der to formulate an inverse problem for object reconstruction.
To solve this inverse problem, we propose a dictionary learn-
ing algorithm for signal reconstruction from measurements
obtained by a deterministic linear system. In contrast to prior
work in Compressive Sensing, we do not impose constraints
on the measurement matrix, but allow it to be defined by
the properties of a specified camera system. Given the mea-
surement matrix, the proposed algorithm learns a dictionary
from a large database of examples and simultaneously mini-
mizes the mutual coherence between the measurement matrix
and the dictionary. We evaluate the performance of the al-
gorithm on object reconstruction from plenoptic system mea-
surements and show that it outperforms existing solutions.

Index Terms— Plenoptic imaging, dictionary learning,
compressive sampling, mutual incoherence.

1. INTRODUCTION

In digital imaging systems we often encounter linear inverse
problems, where we need to reconstruct certain properties
of the original object (color, depth, etc.) from system mea-
surements. For conventional digital cameras, such methods
include denoising and deconvolution, which have been ex-
tensively studied in the literature. In computational imaging
systems, however, the optical path is often modified such
that the system cannot be modeled by a convolution with a
conventional point spread function. A recently developed
computational imaging system is a plenoptic camera, which
provides additional functionalities compared to a standard
camera, such as instantaneous multi-spectral imaging [1], re-
focusing [2] and 3D imaging [3]. This is achieved via optical
modifications (insertion of a micro-lens array as shown in
Fig. 1) and using advanced image processing algorithms.

Plenoptic systems provide those additional functionali-
ties at the expense of spatial image resolution, reduced to
the number of microlenses (lenslets) in the system. Several
authors [4, 5, 6] proposed to model the process of image
formation through a plenoptic system and to use this forward

model for high-resolution object reconstruction. Shroff and
Berkner [5] used diffraction analysis and derived the sys-
tem response matrix, called the Pupil Image Function (PIF)
matrix. By posing the object reconstruction problem as an
inverse problem and solving it via non-linear fitting, they
demonstrated recovery of high spatial frequency object in-
formation, up to the cut-off frequency of the main lens [6].
However, inversion represents a challenging problem because
the PIF matrix is rank deficient, especially when the object is
in focus on the microlens array plane. For typical levels of
system noise, the quality of the image obtained in [6] is low
compared to an image acquired by a conventional camera.

Similar linear inverse problems have recently been suc-
cessfully solved by applying sparse priors and the theory of
Compressive Sampling (CS). Almost all prior work in CS
uses special random measurement matrices and well-known
bases (or dictionaries) such as wavelets [7]. This is mostly
driven by the existence of theoretical proofs of mutual inco-
herence between these measurement matrices and dictionar-
ies, which is required for stable signal reconstruction. In con-
trast to these works, we address the case when we are given
a deterministic measurement matrix specified by a physical
system (e.g., a PIF matrix for a plenoptic camera) and pro-
pose an algorithm that uses dictionary learning [8] to train a
dictionary that is incoherent with that system matrix.

Several authors have addressed dictionary learning from
linear measurements. Isely et al. assume a Gaussian iid
measurement matrix and show that the dictionary can be
learned from such measurements, without a direct access to
signals [9]. Gleichman and Eldar consider dictionary learn-
ing for a measurement matrix that is a union of orthogonal
bases [10]. Both works assume specific measurement matri-
ces. Such assumption is obviously too constraining for our
case of pre-specified system matrices. Duarte-Carvajalino
and Sapiro proposed an algorithm that simultaneously learns
the measurement matrix A and the dictionary Φ [11]. This
is achieved by iterating between optimization of A and adap-
tation of Φ. They enforce a penalty on the mutual coherence
between A and Φ, which is integrated in the optimization
of A. Thus, reducing the mutual coherence requires chang-
ing A. This makes their algorithm unusable for incoherent
learning with a fixed A. Finally, we should mention the work
of Yang et al. [12], who propose dictionary learning for im-
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Fig. 1. Plenoptic (light field) camera system.

age superresolution. In their method, inference is done from
the measurements, while learning is done on high-resolution
images. They do not impose a coherence penalty, but hope
that the learned dictionary will perform well in most cases.
However, without the bound on the coherence between A and
Φ, the reconstruction is not reliable.

The main difference of our approach to prior art is that we
learn a dictionary that is both adapted to signal statistics and
that satisfies a property necessary for reliable reconstruction:
it has small mutual coherence with a given system matrix.
We apply our method to high-resolution object reconstruction
in plenoptic camera systems. Simulation results demonstrate
a significantly improved object reconstruction quality com-
pared to the previous solution in [13] and compared to a dic-
tionary learning approach that does not minimize coherence.

2. PLENOPTIC SYSTEM MODEL

Plenoptic imaging can be achieved by placing a microlens
array in front of an image sensor [2], as shown in Fig. 1.
The effect of this modification is that we can acquire a 4D
light field, capturing both the angular and spatial resolution
of light reflected from an object in a scene. Moreover, we
can insert a spectral filter array at the main lens aperture and
obtain a multi-spectral camera. Data captured behind each
microlens (lenslet) at the sensor is called a super-pixel and is
comprised of several pixels capturing the light rays coming
from the same point in space, but from different directions.

Because of these modifications, we do not have a one-
to-one mapping between the sensor (pixel) space and the ob-
ject space. Rather, object and sensor space are related by the
system’s response function called the pupil image function
(PIF) [5], which is analogous to the point spread function in
conventional cameras. For a given optical system and a local
plane position, its PIF for different points in the local plane
can be obtained using the principles of Fourier optics [5]. For
a 3D object space, we can define PIFs for a set of local planes.
The collection of all the PIF responses for different points in
the object space comprises the system matrix A. If we de-
note the image at the sensor as y (in a vectorized form) and
the object points as x, we can formulate the image acquisition

process of a linear plenoptic system as: y = Ax+η, where η
represents system noise. The reconstruction problem is thus
to find x, given y and A. However, the PIF matrix can be rank
deficient and recovering a high resolution object data repre-
sents a difficult inverse problem. This is particularly the case
when the main lens focuses onto the lenslet array, as in this
case there is no parallax between light rays, and superresolu-
tion methods such as [4] are not applicable. The focused case
is of particular interest for multi-spectral imaging systems.

To solve an under-determined linear system we need to
incorporate some prior information about the signal or image,
such as sparsity. This prior assumes that the signal is sparse
in a certain dictionary Φ, i.e., that in the signal model x =
Φc the vector of coefficients c has a small number of non-
zero entries. Compressive Sensing (CS) theory addresses the
problem of the reconstruction of sparse signals from linear
measurements [7]. Following the introduced notation, the CS
reconstruction problem is to find a sparse estimate for c from
the measurements y such that y = AΦc + η. In CS theory,
matrix A is called the measurement matrix. When certain
conditions on A and Φ are met, it has been shown that sparse
c (and hence x) can be reconstructed by solving the following
convex optimization problem:

ĉ = argmin
c

[
‖y −AΦc‖22 + λ‖c‖1

]
, (1)

where λ is a trade-off parameter between the level of sparsity
and the fidelity of signal reconstruction [14]. The optimiza-
tion problem (1) is convex and can be solved efficiently using
interior point or gradient methods. However, CS theory re-
quires that A and Φ are mutually incoherent, i.e., that the
coherence between them is small. The mutual coherence be-
tween A and Φ is defined as [15]:

µ(A,Φ) = max
i,j
|〈ai,φj〉|, (2)

where ai is the i-th row of A, φj is the j-th column of Φ and
〈·〉 denotes the inner product. To this date, only a few exam-
ples of the matrix A have been shown to satisfy this condition
with high probability, for any given Φ. The most commonly
used ones are Gaussian iid and Bernoulli iid matrices. How-
ever, in cases like ours where A is defined by deterministic
system specifications, often there are no guarantees for inco-
herence. One can ignore the condition and still perform sig-
nal estimation, hoping for the best, but the reconstruction can
then fail in some cases, making the whole system unreliable.

We propose to address this problem from a different per-
spective. Rather than trying to design a system such that its
matrix A is incoherent with any existing dictionary, we want
to find a dictionary Φ that is incoherent with a given A and is
well fitted to sparsely represent the measured signal. In order
to do so, we propose a novel dictionary learning algorithm
that trains a dictionary Φ from a large set of image examples
and simultaneously enforces incoherence between A and Φ.
In the following, we refer to the proposed method as Dictio-
nary Learning for Incoherent Sampling (DLIS).
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3. DICTIONARY LEARNING FOR INCOHERENT
SAMPLING (DLIS)

Most existing dictionary learning methods address the case
when the signals or images are directly observed, i.e., when
the measurement matrix is identity [16]. The signal model is
then X = ΦC, where C is a matrix whose columns are co-
efficient vectors for different signals. Since C is not known
a priori, learning algorithms first estimate C by minimizing
‖Y−ΦC‖22+λ‖C‖1 (inference step) and then use those val-
ues to adapt the dictionary Φ (learning step). The algorithm
iterates between these two steps until convergence.

If the signals are not directly observed, but are measured
through a measurement matrix A, estimation of C during the
inference step requires that matrices A and Φ have small mu-
tual coherence. This condition influences the dictionary learn-
ing process because we need to find a dictionary that not only
well describes the data, but is also incoherent with the system
measurement matrix A. We propose a new dictionary learn-
ing algorithm that achieves such learning. It is also a two-step
algorithm, but with two important modifications. First, since
the goal of our dictionary learning is to find a dictionary from
given measurements, we include the measurement matrix A
in the inference step:

(INFERENCE): Ĉ = argmin
C
J1,

where J1 =
[
‖Y −AΦC‖22 + λ‖C‖1

]
. (3)

Here, Y is a matrix whose columns are measurement vectors
for different signal examples in the training set. Since the
training data is usually huge, at each iteration we take a dif-
ferent subset of B randomly chosen examples. The objective
function in Eq. (3) is convex and it can be easily optimized
using gradient methods. The derivative of the objective is:

∂J1
∂C

= −2(AΦ)
T
(Y −AΦC) + λsign(C). (4)

We define the sign function at zero to be equal zero.
Furthermore, we modify the learning step to include a

penalty on the coherence between the measurement matrix
A and the dictionary Φ. If we look at the definition of coher-
ence in Eq. (2), we can see that it is µ = ‖AΦ‖∞, i.e., the
infinity norm of AΦ. Since the infinity norm is not differen-
tiable everywhere, we approximate it with the Frobenius norm
‖AΦ‖F , i.e., the `2 matrix norm. This norm is convex and
differentiable everywhere, with a derivative that is fast to cal-
culate. Alternatively, we can use an `p norm with p > 2 that
would better approximate the infinity norm, but this would
increase the computational complexity. Thus, the Frobenius
norm represents a good trade-off between performance and
complexity. We define the learning objective function as:

(LEARNING): Φ̂ = argmin
Φ
J2, where

J2 = argmin
Φ

[
1

B
‖X−ΦĈ‖2F + δ‖AΦ‖2F

]
, (5)

where X is a matrix whose columns are training examples and
δ is a trade-off parameter between approximation and coher-
ence. Objective function J2 is convex and can be minimized
using gradient methods. Its derivative over Φ is:

∂J2
∂Φ

= − 2

B
(X−ΦĈ)ĈT + 2δ

[
AT(AΦ)

]
. (6)

Inference and learning steps are iterated until convergence.
The proposed dictionary learning algorithm for incoherent
sampling is summarized in Algorithm 1.

Once we have learned a dictionary Φ that is incoherent
with the measurement matrix A, we can use it to reconstruct
any signal x from measurements y, by estimating its sparse
coefficient vector c using (1).

Algorithm 1 Dictionary learning for incoherent sampling
Input: training data Xt, measurement matrix A, parame-
ters σ, λ, δ, p, L (dictionary size), B > 4L
[N,Q] = size(Xt); M = size(A, 1)
Initialize dictionary at random: Φ ∼ UN×L(−0.5, 0.5)
Run learning for p iterations (or until convergence):
for i = 1→ p do

Randomly select B training signals: X = Xt(:, s), s =
dte, t ∼ UB×1(0, Q)
Generate noisy measurements: Y = AX + η, η ∼
NM×N (0, σ)
Initialize coefficients: C0 = 0
solve: Ĉ = argmin

C

[
‖Y −AΦC‖22 + λ‖C‖1

]
solve: Φ̂ = argmin

Φ

[
1

B
‖X−ΦĈ‖2F + δ‖AΦ‖2F

]
normalize columns of Φ̂ : φ̂j :=

φ̂j

‖φ̂j‖2
, ∀j ∈ [1, L]

Φ := Φ̂
end for
Output: Φ

4. APPLICATION TO PLENOPTIC IMAGING

We now present an application of the proposed algorithm to
plenoptic imaging. Note, however, that this algorithm is gen-
eral and applicable to any linear system whose measurement
matrix is defined by the system configuration.

We have first simulated the PIF matrix for one on-axis
lenslet using the wave-propagation analysis of the non-
aberated plenoptic system [5]. This PIF simulates image
formation for the case of a planar object that is in focus at the
microlens array plane. Note that this object placement does
not reduce the generality of the method, since the PIF matrix
can be defined for any plane or for the whole volume. The
training set X was a set of video frames from a natural movie
database used in [17]. There was no pre-processing on the
training set. We have learned a dictionary of atoms of size
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(a) in object space (b) in sensor space

Fig. 2. Samples of learned atoms.

40 × 40 with L = 1600 atoms. This block size is chosen
such that exactly one lenslet images one block, taking into
account the sampling of the PIF (superpixel size 52 × 52).
In each iteration we have selected a batch of 6400 blocks of
size 40 × 40. Each block has been reshaped into a vector
and placed into a column of X. We have then simulated the
plenoptic imaging process as Y = AX + η, where A is the
PIF matrix and η is white Gaussian noise of SNRL = 40dB.

Learning has been initialized randomly and stopped af-
ter approximately 300 iterations, when there was no further
decrease of the objective function. Fig. 2a shows three exam-
ples of learned atoms in the object space. We do not see much
structure in these atoms; however, when projected on the sen-
sor space (by multiplying with A) the atoms exhibit circular
structure corresponding to the superpixel structure (Fig. 2b).
In Fig. 3 we show the DLIS reconstruction for the planar Doll
object (Fig. 3a), when placed in front of the plenoptic sys-
tem presented in [5]. We have divided the original object
into blocks, according to the field of view of each lenslet in
an 11 × 11 array, and simulated the superpixel at the sen-
sor behind each lenslet (Fig. 3b). White Gaussian noise of
SNRt = 60dB has been added to the sensor data. Object re-
constructed using non-linear least square fitting, as proposed
in [13], is shown in Fig. 3c. Using the inference step given
by Eq. (3), we have estimated the sparse coefficient vectors Ĉ
and the reconstructed blocks as X̂ = ΦĈ, shown in Fig. 3d.
Peak Signal to Noise Ratio (PSNR) for the reconstructions
using non-linear least square fitting is 22.5dB, while for the
reconstruction using DLIS is 26.1dB. The visual quality is
also better as shown in close-up images in Fig.3e and Fig.3f.
One can notice some blocking artifacts due to per-superpixel
processing of the sensor data. These can be removed by per-
forming object reconstruction from 3 × 3 lenslet areas and
averaging. This modification is one of our future work items.

We have also tried to reconstruct our object using dic-
tionaries learned with conventional image sparse coding [8,
16], but the reconstruction failed in all tests. This is because
plenoptic sensor images have completely different statistics
than natural images. Finally, we have compared the recon-
struction quality of DLIS for Doll and Lena images when
the dictionary is learned: 1) with the coherence penalty (δ =
10−3 6= 0), yielding coherence value µ(A,Φ1) = 0.02; and
2) without the coherence penalty (δ = 0), yielding coherence
value µ(A,Φ2) = 0.92. Because the condition on mutual
incoherence between A and Φ ensures stable reconstruction,
variations of PSNR for different noise realizations should be

(a) (b) (c)

(d) (e) (f)

Fig. 3. Reconstruction results for the Doll object. a) original,
b) image formed at the sensor, c) reconstruction using non-
linear curve fitting, PSNR = 22.5dB, d) reconstruction using
the DLIS, PSNR = 26.1dB, e) and f) close-up of c) and d).

SNRt 40 dB 50 dB 60 dB 70 dB
PSNR [dB] PSNR [dB] PSNR [dB] PSNR [dB]
m σ m σ m σ m σ

Doll δ 6= 0 21.8 1.5 24.2 0.3 25.9 0.3 26.4 0.5
Doll δ = 0 20.5 2 23.7 1.5 24.0 2.7 25.4 1.5
Lena δ 6= 0 21.3 1 23.5 0.3 24.9 0.3 25.5 0.1
Lena δ = 0 18.7 3.7 22.9 1.8 24 1.6 24.3 1.3

Table 1. Doll and Lena reconstruction PSNR for different
sensor noise SNR, each averaged over 50 runs (m denotes
average PSNR, σ denotes standard deviation). The values are
given for DLIS in two cases: 1) δ = 10−3 6= 0: dictionary is
learned with the coherence penalty, and 2) δ = 0: dictionary
is learned without the coherence penalty.

smaller in the case 1) than in 2). Indeed, for 50 random noise
realizations and SNR values of 40, 50, 60 and 70 dB, the case
1) always gives higher average PSNR and smaller standard
deviation than the case 2), as shown in Table 1.

5. CONCLUSION

To the best of our knowledge, this is the first algorithm that
achieves dictionary learning for a given measurement matrix
while imposing a coherence penalty between A and Φ. The
proposed algorithm provides an efficient way to reliably use
CS in systems where the measurement matrix is defined. We
have shown that the proposed method can be applied to 2D
object reconstruction from plenoptic sensor measurements,
yielding high-quality reconstructions. The proposed method
is not limited to 2D objects and can be extended to 3D or
multi-spectral objects, thus fully exploiting the advantages of
plenoptic cameras. We leave this for future work, along with
the convergence analysis of the learning algorithm and exper-
iments on real plenoptic camera data.
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