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ABSTRACT

This paper presents a novel segmentation approach for extracting
faces from videos. Under an active learning framework, the seg-
mentation is conducted automatically without human interactions.
A small portion of pixels are first labeled as face or non-face. Given
these labeled samples, a semi-supervised spline regression model is
then applied to obtain the face region. Based on the segmentation
result, new pixels are selected and labeled. These two steps perfor-
m iterately until convergence. The main novelty is that color and
depth data are combined to provide the labeling information. Our
approach is validated via comparisons with state-of-the-art methods
on real videos captured from the commodity Kinect camera.

1. INTRODUCTION

Face segmentation plays an important role in many computer vision
applications, such as human computer interaction, video conferenc-
ing and video editing [1]. However, it is difficult to extract accurate
face regions. The challenges lie in occlusions, diverse illuminations
and complex background.

During the past decades, many approaches have been proposed
for object segmentation. In earlier times, the approaches are com-
monly data-driven [2, 3]. Unlike those, recent approaches partition
an input image into semantic objects with specified prior informa-
tion [4, 5]. According to how the prior is given, this kind of approach
can be classified into two categories: interaction based method and
automatic method. In the former, the prior information is supplied
by human [6, 4]. A rectangle containing the object to be segmented
is required in [4] while many scribbles about the object and back-
ground are needed in [6]. This cost of human interventions limits its
application in dynamic conditions [7]. Besides, different interven-
tions lead to different results as shown in Fig. 1. Efficient segmen-
tation is usually achieved after many trials which is also restricted
in video applications. Different from that, the automatic method ob-
tains prior information by an offline learned model [5]. For example,
a frontal face detector is employed to locate the face and the segmen-
tation is then conducted based on the face location in [5]. However,
current frontal face detector works well but designing a robust profile
face detector is still unsolved.

Obtaining priors via face detection is restricted for the difficulty
of robust face detector. However, skin color, being invariant to pose
changes, is a stable information for face. It has been employed in
skin detection [9], face tracking [10]. Hence, it sounds reasonable to
obtain prior information via skin color detection. Nevertheless, the
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Fig. 1. Face segmentation comparisons: (a) and (b) the results by [6]
with different scribbles; The red and green strokes illustrate the face
and non-face respectively; (c) and (d) results of GrabCut with differ-
ent interactive regions [4]; (e) the result of our method.

skin colors vary with lighting changes and many background colors
may look similar as skin. Those decrease its robustness for provid-
ing reliable clues. With the development of low-cost depth camera,
the depth information is easily acquired. Its insensitivity to illumina-
tions makes it compensating the limitations of color cue. That makes
fusing depth with color reasonable. It should be noted that the depth
image from low-cost camera is usually coarse with possible noises
and holes. Thus, segmentation with only depth is apt to be inaccu-
rate. Motivated by that, we propose an automatic face segmentation
approach with both color and depth cues. Skin color detection and
depth constraint work together to provide prior information. Given
the priors, the segmentation is performed by the local spline regres-
sion [6] which is embedded in active learning framework to improve
the accuracy. Experimental results verify its efficiency and robust-
ness in video segmentation.

Our method is distinguished by the following contributions:

• Color and depth cues are fused to acquire semantic priors
automatically. The priors are comparative with the informa-
tion provided by users as in the interactive methods [4, 6].
Besides, it is robust to face pose variations compared to the
frontal face detector in [5].

• Active learning is applied to improve the segmentation accu-
racy if needed. Under difficult conditions, efficient segmenta-
tion results are usually achieved after several trials of human
intervention in [4, 6].

The paper is organized as follows. The main segmentation
framework is described in Section 2. How the active learning ap-
proach works is talked in Section 3. In Section 4, experimental
results and analysis are presented. Finally, discussion and future
work are illustrated in Section 5.
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2. THE SEGMENTATION FRAMEWORK

In this section, the framework of the proposed segmentation method
is first illustrated, which applies active learning to the local spline
regression based segmentation (LSR-Seg). To make the paper self-
contained, the main idea of LSR-Seg is then described. How the
active learning is utilized is presented in next section.

2.1. Main Framework

Given a color image and its corresponding depth information, the
proposed method extracts face region without user intervention. This
is achieved automatically through applying active learning to LSR-
Seg. The flowchart is illustrated in Fig. 2. LSR-Seg classifies all the
pixels into face and non-face given the labels of partial points. Ac-
tive learning is then utilized to improve its performance. This is con-
ducted by sampling query points based on the segmentation results
and labeling them by an oracle. These labeled points are employed
for the next LSR-Seg. That process iterates until no segmentation
improvement is achieved. Here, the query points are labeled auto-
matically using both color and depth information.

Depth Data

Label Re-evaluation LSR Segmentation

Labeling Query Points Sampling Query Points Terminate?

Segmentation 
Result

Y

N

Active Learning

Fig. 2. The flowchart of active learning based segmentation.

To formulate the problem mathematically, the input color im-
age is denoted as I and the depth information as D. The color
feature for one pixel is represented as x ∈ R3 and its label is
denoted as y ∈ {1,−1} (1 for face point and −1 for non-face
point). The color features for all the pixels are collected into X =
{x1,x2, . . . ,xn} and their corresponding depth features are col-
lected in D = {d1, d2, . . . , dn}, where n is the number of pixel-
s. Thus, the problem is to estimate the labels for all pixels Y =
{y1, y2, . . . , yn} with X and D:

{X ,D} → Y. (1)

Before conducting LSR-Seg, the labels for a small portion of X
must be available. Denote the labels for these pixels as Fl =
{fl1 , fl2 , . . . , flm} , 1 < m < n, 1 ≤ lj ≤ n which are automati-
cally obtained in this paper.

2.2. Local Spline Regression based Segmentation

LSR-Seg [6] works in a semi-supervised way by estimating Y given
X and Fl: {X ,Fl} → Y . To achieve that, a local spline regression
function is utilized to map one pixel’s neighboring features to their
labels and the regularized losses between these pixels’ true labels
and their corresponding mapped labels are minimized. Fitting a s-
pline function for each pixel and minimizing all the local losses leads
to a global loss which can be written in matrix format as yTMy with
y = [y1, y2, . . . , yn]

T . More details can be found in [6].

Aside from the global loss, the loss on the labeled points is
also considered. Hence, the labels for all pixels are obtained by
miny(y

TMy + γ
∑m

j=1(flj − ylj )
2), which can be rewritten as:

min
y

(yTMy + γ(f − y)TD(f − y)), (2)

where f = [f1, f2, . . . , fn]
T and D is a diagonal matrix with 1

for labeled pixels and 0 for unlabeled pixels. Each element of f
is assigned as 1 or −1 if it is labeled, and 0 otherwise. The first
term in Eqn. 2 constrains the estimated labels being smooth between
neighboring pixels. The second term makes the estimated labels of
the m labeled points approximating their previous assigned values.
γ is a trade-off parameter.

The LSR-Seg has been proven efficient in interactive image seg-
mentation with human supplied scribbles. However, the scribbles are
critical to its performance with different scribbles leading to possibly
distinct results as shown in Fig. 1. To obtain accurate segmentation,
it often needs to supply appropriate scribbles, which is not applicable
in video segmentation. In this paper, it is conducted for face segmen-
tation with automatic prior information instead of human scribbles.

3. ACTIVE LEARNING BASED FACE SEGMENTATION

In this section, we first formulate the active learning based query
point sampling process. How these query points are automatically
labeled is then illustrated.

3.1. Active Learning based Sampling

In machine learning, query points are actively sampled with a suit-
able strategy to improve the model’s performance [11]. Different
scenario calls for different sampling strategy. In the context of video
segmentation, the sampled points provide labeling information for
LSR-Seg. As demonstrated in Fig. 1(a), insufficient labeling of the
hair region leads to it being treated as face. Fig. 1(b) shows that
the lack of labels of skin pixels around the eye region yields face
holes in the eye and eyebrow regions. Thus, the query points, to
be automatically selected, should cover these critical positions for
discriminating face and non-face.

Before segmentation, no prior is known about face and non-face.
Thus, they are assumed to be equally distributed in the image. Ac-
cordingly, a dense and random sampling strategy is utilized, which
randomly selects up to 10% pixels from the segmentation window
as query points. The dense and random sampling makes the critical
positions covered with a high possibility. The information could be
propagated even one pixel is sampled and labeled for each critical re-
gion. These selected points will then be automatically labeled. The
sampling and labeling process is iterated to improve the segmenta-
tion performance. The repeat of the process makes those critical and
discriminative information gradually included.

3.2. Automatic Labeling

The selected query points are required to be labeled for the latter
semi-supervised LSR-Seg. Since the segmentation part does not
consider labeling noise, the labeling information will be propagated
via the data graph no matter it is correct or not. Thus, the sampled
query points are needed to be either labeled correctly or not labeled.
Here, they are automatically labeled utilizing both color and depth
information. A skin color detector is adopted to identify possible
skin and nonskin pixels. To reduce the possible labeling outliers of
skin detection, the depth information is employed.
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The skin color detection is accomplished via a linear regression
tree, due to its good generalization ability and discriminative abil-
ity [12]. At each internal node of the tree, linear regression be-
tween feature x and label y is performed and a split is conducted
with the regressed value. Each leaf node encodes the likelihood for
skin P (x|y = 1) and nonskin P (x|y = −1). The split functions at
internal nodes and likelihoods at all leaves are learned offline from a
training data set. At online stage, each query point denoted as x is
dropped down the tree until reaching one leaf node and is labeled as

d(x) =


1,

P (x|y = 1)

P (x|y = −1) > α

−1, P (x|y = −1)
P (x|y = 1)

> α

0, otherwise

, (3)

where d(x) = 1 and−1 represent that x is a skin and nonskin point,
respectively. 0 means unlabeled, α controls different prior for skin
and nonskin points.

(a) (b) (c) (d)

Fig. 3. (a): depth image. (b): RGB image. (c): the head region after
depth constraining. (d): final result by the proposed result.

The depth information is utilized since it is invariant to illumi-
nation changes. Besides, the skin and its analogous counterpart in
background may encode different depth values. Given the skin de-
tection result, the coarse face region is obtained with depth for con-
straining. All the edges are first detected from the depth image and
the depth image is labeled into several regions with that. The re-
gion with most query skin points is treated as the region containing
human. Then the head region is obtained with the aid of color in-
formation. An over-segmentation process is conducted on the RGB
image leading to many over-segmentation regions [2, 13]. Inside the
human region, all the over-segmentation regions with the ratio of
skin detection points larger than a threshold are merged and treat-
ed as the head region. To make the constraint reliable, dilation and
erosion are performed on the head region to constrain the skin and
nonskin query points. For clarity, two things should be noted. First,
the depth image is coarse with many holes around the object bound-
aries, thus the edges are not accurate. Second, the over-segmentation
result is also not so faithful. Based on those, the resulting head re-
gion is accurate as shown in Fig. 3. Accurate segmentation calls for
later process with the coarse region as a constraint. After LSR-Seg,
accurate face is obtained which can be seen from Fig. 3.

4. EXPERIMENTS

In this section, a set of experiments are conducted to verify the effi-
ciency of our proposed face segmentation method. The experimental
settings are first illustrated, then the results and analysis are reported.

4.1. Experimental Settings

The proposed face segmentation method has been tested on videos
captured with Kinect which provides us both RGB and depth infor-
mation with a pair of calibrated color and depth sensors. We collect
videos under different scenes. The first is in a laboratory scenario
under a simple lighting condition but with a confusing background
(s1). The second one was grabbed outdoor with a building wall as
background (s2). Another two difficult scenes are also tested.

To validate our proposed method, we also evaluate the perfor-
mance of GrabCut [4] and LSR-Seg [6] with only the color feature.
Since depth is also considered in our approach, an interactive method
denoted as GrabCutD [14] with both color and depth is also com-
pared. For our method, only a rectangle containing face is given in
the first frame since there is no need to segment face in the whole
frame. For the skin detection, several images are randomly captured
and labeled to train the detector. On each training image, 3000 skin
pixels and 5000 nonskin pixels are randomly selected out to train the
skin detector. For all videos, γ is experimentally set to 10000 and α
is set to 1.5. The parameter k in [14] manipulating the influence of
two cues is set to 80% according to our experiences.

4.2. Results and Analysis

Given the initial face region at first frame, the segmentation method
is conducted automatically. The position in the current frame is ob-
tained from the segmentation results of last frame. LSR-Seg, Grab-
Cut and GrabCutD are all run with given scribbles or rectangles.

Fig. 4. Results for the indoor video. The first row is the segmenta-
tion windows. From the second to the fifth rows are the results of
GrabCut, LSR-Seg, GrabCutD, and our method. From left to right
are frames 51, 65, 80, 112, 134.

The results on the first indoor sequence are displayed in Fig. 4.
All the methods could extract face region under different poses.
However, different performances are reached. GrabCut and Grab-
CutD shows similar performances with possible outliers in the hair
region. They both learn Gaussian Mixture Model [8] with the human
given rectangle and measure how possible each pixel belongs to face.
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Fig. 5. Results on the outdoor video. The first row shows the seg-
mentation windows. From the second to the fifth rows are the results
of GrabCut, LSR-Seg, GrabCutD, and our method. From left to right
are frames 32, 89, 104, 141, 151.

The learned model is not so discriminative leading to the outliers.
GrabCutD obtains coarser boundaries than GrabCut. That is due to
that the coarse depth information decreases its accuracy around face
borders. LSR-Seg is prone to reach holes in the face region. The
scribbles not covering all the critical positions induce those holes.
Comparatively, the extracted regions by our method are smooth in
the boundaries and robust to the hair and eye parts. The smooth
boundary comes from the efficiency of local spline regression based
segmentation. Complete and accurate results especially around hair
and eyes benefit from effective prior information. Critical prior
information with the LSR-Seg leads to our final performance.

How these methods perform on the recorded outdoor sequence
can be seen in Fig. 5. The main difficulties of this scene are the
large pose changes and the background wall with analogous color as
skin. Akin as the indoor scene, the segmented faces of GrabCut and
GrabCutD are inaccurate and GrabCutD works worse than GrabCut.
LSR-Seg works better than them due to the more efficient human
interaction. However, many outliers exist in the results. Our method
performs approximately as LSR-Seg but containing less outliers.

We also evaluate these methods on two other different scenes
with difficult illumination conditions and partial occlusion. Due to
the space limit, only several snapshots are displayed in Fig. 6. Our
method achieves more accurate and robust results than GrabCut and

Fig. 6. Results on the two other scenes. From left to right are: seg-
mentation window, GrabCut results, LSR-Seg results, GrabCutD re-
sults and our results.

GrabCutD. Comparative performances as LSR-Seg are reached val-
idating its efficiency for automatic segmentation.

Table 1. The F-score for two scenes

s1

frame 71 79 85 105 137
GrabCut 0.9771 0.958 0.8963 0.9318 0.9471
LSR-Seg 0.9725 0.971 0.9607 0.9509 0.9556

GrabCutD 0.9767 0.961 0.8986 0.9529 0.9174
Our 0.9814 0.989 0.9803 0.9720 0.9688

s2

frame 17 36 156 175 188
GrabCut 0.9435 0.8271 0.9367 0.8920 0.9294
LSR-Seg 0.9837 0.9852 0.9537 0.9744 0.989

GrabCutD 0.9157 0.8061 0.9237 0.8739 0.911
Our 0.9902 0.9805 0.9913 0.983 0.984

To quantitatively evaluate our method, we randomly selecte
several frames from the test videos and manually labeled the
groundtruth. The F-scores for the four methods are measured:

F = 2 ∗ precision ∗ recall
precision+ recall

. (4)

The precision and recall are the precision and recall of the seg-
mentation result, respectively. The score values of these methods
are listed in Tab. 1. Our method reaches to higher score than Grab-
Cut and GrabCutD which can also be observed from the above fig-
ures. It achieves almost the same results with LSR-Seg illustrating
its efficiency. It should be noted that a slight advantage of F-score
corresponds to a big difference on the segmented face region.

5. CONCLUSION

An automatic face segmentation method was proposed. It relied on
color and depth information with no human intervention. Compar-
ative experiments with several methods demonstrated its efficiency
in video segmentation. Accurate face regions were obtained under
different poses, scales and clustered background. These owe to the
fusion of the two cues for providing semantics about face. Future
work will address its intensive use on more challenging scenarios.
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