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ABSTRACT 

 
In this paper, we propose a novel vehicle tracking system 
under a surveillance camera. The proposed system tracks 
vehicles by using constrained multiple-kernel, facilitated 
with Kalman filtering, to continuously update the position 
and the orientation of the moving vehicles. To further 
reliably track vehicles under partial occlusion or even total 
occlusion, our tracking algorithm also systematically builds 
3-D vehicle model, from which the license plate region is 
identified and a self-similarity descriptor is further used for 
low-resolution license plate matching. Experimental results 
have shown the favorable performance of the proposed 
system, which can successfully track vehicles under serious 
occlusion while maintaining the knowledge of 3-D geometry 
of the tracked vehicles. 
 

Index Terms— Vehicle tracking, Multiple kernels 
tracking, 3-D vehicle model, Self-similarity descriptor 
 

1. INTRODUCTION 
 
Nowadays, video-based traffic surveillance over vehicles has 
become a very important research area. By tracking vehicles, 
it is possible to collect their trajectories in videos for high 
level analytics, for example, detection and avoidance of 
vehicle accidents, detection of specific vehicles for theft 
discovery, collection of traffic statistics information for 
further decision making, and so on. 

Vehicle tracking can be regarded as a specific category 
of video object tracking, which has been extensively 
developed and discussed. These object tracking techniques 
may not be directly applicable for vehicle tracking due to the 
fact that color information is not very discriminative among 
different vehicles. Many approaches have thus been 
proposed specifically for vehicle tracking [1]-[4], mainly 
based on color histogram or 2-D contours. An intuitive way 
to extract features for vehicle identity is to modularize a 
vehicle into a 3-D model. Several techniques which use 3-D 
vehicle models to locate and recognize the vehicles have 
also been proposed [5]-[9]. These 3-D model-based works 
show their efficient performance in vehicle tracking without 
explicitly dealing with occlusion scenarios. 

Another important feature of a vehicle is its license 
plate. However, due to low resolution and high distortion 
nature, caused by the dynamic viewpoints of camera, of 
license plate captured from surveillance videos, a clear 
license plate image for license plate recognition (LPR) is 
hardly available in general cases. Although feature 
descriptors such as Harris corner [10], SIFT [11], and SURF 
[12], are able to maintain the characteristics of the license 
plate, these descriptors are sensitive to corners, lines, or 
intensity, which cannot be extracted properly from the 
distorted videos.  

In this paper, we effectively combine the vehicle 
tracking technique with 3-D vehicle model into one system 
and incorporate license plate matching with the SSD, so as 
to not only track vehicles under occlusion but also maintain 
the knowledge of 3-D vehicle geometry. The proposed 
system extended our previously developed video object 
tracking technique [14] [15], called Kalman-based 
constrained multiple-kernel (KCMK) tracking. Meanwhile, 
built upon the approach in [7], the system automatically 
builds a 3-D vehicle model for each tracked vehicle. On the 
other hand, we effectively adopt self-similarity descriptor 
(SSD) [13] to measure similarity between license plate 
images from the distorted surveillance videos. To reliably 
extract the SSD, 3-D vehicle model is incorporated to locate 
the region of the license plate, which is perspectively warped 
to the view-normalized version and whose SSD can now be 
used to better identify a vehicle. Facilitated by the 3-D 
vehicle model, the proposed system solve issues of partial 
occlusion by 3-D model based multiple kernel tracking, and 
total occlusion by performing license plate matching in 
terms of the SSD. 

The rest of the paper is organized as follows. In Section 
2, the details of the algorithms adopted in our system, 
including KCMK tracking, 3-D vehicle shape fitting, and 
SSD, are presented. Section 3 depicts overview of the 
proposed system and how to integrate KCMK tracking 3-D 
vehicle model, and license plate identification into one. The 
experimental results are shown in Section 4, followed by the 
conclusion in Section 5. 
 

2. ADOPTED ALGORITHMS 
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2.1. KCMK Tracking 
 
The objective of the constrained multiple-kernel tracking [14] 
is to retrieve a candidate model, which can be described with 
multiple kernels with pre-specified constraints among these 
kernels, so that the maximum similarity can be reached 
between the tracked objects and the candidate model For M 
kernels the total cost function J(x) is defined to be the sum 
of the weighted N individual cost functions Ji(x), 
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J w J
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= ∑x x , 

( ) 1 ( )i iJ simi= −x x ,  ( )i iw simiγ= × x ,           (1) 
where simii(x) is the similarity function at the location x in 
the state space domain, the weight wi is adaptively updated 
based on the normalized similarity, and γ  is an pre-
determined empirical constant. Moreover, the constraint 
functions ( ) =C x 0  needs to be considered to maintain the 
relative locations of the kernels. Therefore, the problem 
could be further formulated by 

ˆ arg min ( )J=
x

x x ,  subject to ( ) =C x 0 .          (2) 

Being initially predicted by Kalman filtering, the x of 
each kernel is further directed to the most similar region but 
also maintain the constrained conditions, so that the kernels 
can be tracked successfully [15]. 
 
2.2. Vehicle Shape Fitting 
 
Vehicle shape fitting [7] is to generate an approximate 3-D 
vehicle model deformed from a 3-D generic model. The 3-D 
deformable model with 16 vertices and 23 arcs, as shown in 
Figure 1 (a), is defined by 12 shape parameters and 3 pose 
parameters. These total 15 parameters can be optimized by 
evaluating the fitness, quantified as fitness evaluation score 
(FES), between image data and the 2-D projection of a 3-D 
deformable model, base on an evolutionary computing 
framework called estimation of multivariate normal 
algorithm-global (EMNAglobal). Figure 1 (b) shows eight 
different types of vehicle deformed from the generic model 
shown in Figure 1 (a).  

Generic Model Pickup MiniBus Van Truck

Sedan Hatchback Wagon Bus

 
(a)                                                        (b)                                 

Figure 1. (a) Generic model. (b) Different types of vehicle deformed from 
the generic model. 

   
Figure 2. (a) Initial frame. (b) License plate from the initial frame. (c) 10th 
frame after the initial one, pixels with the matching score above a threshold 
are marked in red (as indicated by the blue arrow). 

2.3. Self-Similarity Descriptor (SSD) 
 
The self-similarity descriptor (SSD) [13] is based on a 
relative geometric layout of similarities between neighbor-
hoods, so as to match an object in one image with another 
object with different visual appearance in the other different 
image as long as they have a similar shape. The visual 
characteristics of a license plate changes as a vehicle moves 
and in many cases, characters of a license plate are hardly 
recognized except the spatial layout between local patches 
within a license plate. This motivates our use of SSD for 
matching license plates captured from surveillance cameras.  

Figure 2 shows license plate matching using the SSD. 
From an initial frame (a), we roughly cut off a rectangular 
template region from the front of a vehicle as a template 
image (b) and searched the 10th frame for a target license 
plate by densely comparing the SSD of the template and the 
patches from the 10th frame. Pixel locations with matching 
scores above a threshold were marked in red (as indicated by 
the blue arrow) on a gray image (c). The peaks can be seen 
around the license plate in the front of a vehicle. It validates 
our use of the SSD for a license plate even with those 
characters being hardly recognized. 
 

3. OVERVIEW OF THE SYSTEM 
 
Figure 3 shows the overall procedures of the proposed 
vehicle tracking system. The first step is to segment the 
foreground objects, by using the background subtraction 
technique. Second, the Kalman prediction is applied to the 
segmented objects and the detection of occlusion is then 
performed. The system detects if there is an occlusion by 
checking the predicted states of the tracked objects to see 
whether they are merged with one another. If there is no 
occlusion, the tracking results are obtained by measurement 
selection and thus Kalman updating. Otherwise, the system 
checks the occlusion condition (partial or total) according to 
the visibility of the 3-D vehicle model and the similarity of 
the kernels between the previous and current frames. The 3-
D vehicle model built from the previous frame before the 
occlusion is used for multiple kernel tracking or SSD 
extraction in the current frame. If it is a partial occlusion, 3-
D model based multiple kernel tracking is applied. 
Otherwise, for the case where a vehicle is totally occluded 
and reappears in the next couple frames, vehicle features 
matching using the SSD and 3-D vehicle model is employed 
to search for the tracked vehicle to resume tracking. Finally, 
the tracking results are then iteratively used to build the 3-D 
vehicles for the next frame. 
 
3.1. KCMK Tracking with 3-D Vehicle Model 
 
In KCMK tracking, we regard surface planes in the 3-D 
vehicle model are kernels [16]. The corresponding vertices 
of each kernel (plane), annotated by K{•}, are shown in 
Figure 4, where vertices are defined in Figure 1 (a). Each  

(a) (c) (b) 
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Figure 3. Overall proposed system framework 

kernel is a basic component in the tracking procedure. 
However, either due to the view aspects or occlusions, not 
all the kernels are reliable. Thus, we adaptively change 
weight wi in Equation (1) to assign each kernel with different 
importance. First, according to the view aspect, only 
completely visible planes (annotated by Kv{•}) projected 
onto the image frame are used for multiple kernel tracking. 
In other words, kernels hidden behind are weighted by zero. 
Second, the similarity of the occluded kernels is zero 
weighted by Equation (1), so as to mitigate their impact on 
the tracking.  

Unlike the KCMK for human tracking in [14][15] where 
the used multiple kernels are always vertically aligned, the 
alignment orientations of the kernels for vehicles vary 
dynamically in vehicle tracking. Hence, the constraint 
functions in [13] [14] should be redefined: 

( ) ( )
( )
( ) ( )

2 2 2
,

1
,tan

k IVk IV k IV

k
k I

V

k IV
V

I

x x y L

y y
x x

y

ϕ−

− − =

−

+

−
=






,   for vK { }k ∈  ,   (3) 

where (xIV, yIV) the location of the K{IV} and {(xk, yk)} are 
the locations of the visible kernels Kv{•}, Lk,IV is the initial 
distance between K{k} and K{IV}, and φk,IV is the initial 
angle between the kernel axis and the horizontal axis. These 
constants need to be adaptively updated when either size 
and/or rotation of a vehicle are greater than the empirical 
thresholds. 
 
3.2. Occlusion Justification 
 
To justify the occlusion condition, two criteria are used in 
the proposed system: the number of the visible vertex Nv, 
and the similarity of the visible kernels between the previous 
and current frames. We define average similarity as 

0
. ( )

vK

i v
i

avg simi simi K
=

 
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 
∑ x  ,                   (4) 

where Kv is the number of visible kernels. More specifically, 
the occlusion justification is described as follows. 
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where 1α , 2α , 1β , 2β  are the pre-determined thresholds. 
 

K{•} Vertices Description
I 0, 3, 4, 7 rear-side
II 4, 7, 8, 11 boot cover
III 8, 11, 12, 15 rear window
IV 12, 13, 14, 15 roof
V 9, 10, 13, 14 windshield
VI 5, 6, 9, 10 engine hood
VII 1, 2, 5, 6 front-side
VIII 8, 9, 12, 13 right window
IX 10, 11, 14, 15 left window
X 0, 1, 4, 5, 8, 9 right-side
XI 2, 3, 6, 7, 10, 11 left-side

0

I

II
III IV

V
VI

VII

VIII X

IX

XI

 
Figure 4. Table of kernels in the 3-D vehicle. 

 
3.3. Vehicle Features Matching  
 
In the proposed system, KCMK tracking is applied in 
normal and partial occlusion cases. In case of total occlusion, 
vehicle shape and SSD of the license plate extracted from 
the previous frame are used to track the vehicle in the 
coming frames. If the features of a vehicle from the previous 
frame highly match that from the subsequent frame, the 
vehicles are regarded as identical. 

To match the shape features, we calculate the similarity 
sshape of 12 shape parameters between previous 3-D vehicle 
model and subsequent ones. If sshape is greater than a 
threshold τshape, two vehicles are regarded as of the same 
shape. Moreover, we also match the SSD features for further 
verification. Due to sensitivity to scaling and orientation, 
SSD of the license plate is not robust under varying scale 
and orientation. Facilitated by the 3-D vehicle model, these 
features can be extracted easily and be perspectively warped 
to a view-normalized license plate. The corresponding SSD 
are extracted and stored before occlusion happens. If there is 
a newly occurring vehicle in the video, the stored features 
are compared with new vehicle’s features to obtain similarity 
sssd. If sssd is greater than a threshold τssd, two SSD features 
are regarded as the same. If both shape and SSD features are 
matched, two vehicles are regarded as the same. 
 

4. EXPERIMENTAL RESULTS 
 
The experiment settings are described as follows. In the 
KCMK tracking part, K-L distance is used for all similarity 
measures, and the histogram of the object is constructed 
based on the HSV color space and roof kernel [15]. In the 
vehicle shape fitting part, the parameters in EMNAglobal are 
N＝2000, R＝100, the threshold the magnitude of gradients 
for stopping criterion is 4 [7], and f equals to 10; The values 
of several thresholds are α1 = 0.6, α2 = 0.2, β1 = 3, β2 = 5, 
τshape = 0.05, τssd = 0.7. The surveillance camera is well 
calibrated, which implies intrinsic and extrinsic parameters 
are known.  

The efficiency of using 3D shape feature to identify the 
type of vehicles has been proven in [7]. On the other hand, 
to show the efficiency of the SSD, we compare 10 different 
license plates (denoted by 01, 02, …, 10) with one another, 
and with each license plate extracted from the about 20th  
frames after its initial frame (denoted by 01’, 02’, …, 10’). 
Table I shows the results of the comparison. Each license 
plate has a relatively higher similarity score when comparing 
with its corresponding one (gray grids in the table). 
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In order to demonstrate the performance of our system, 
we compare the performance with a baseline particle-filter-
based tracking approach [6] and apply 3-D deformable 
model [7] in both systems. Figure 5 shows some snapshots 
of tracking performance of our dataset 1 in both two 
approaches. As shown in frame 145 and 147, our proposed 
system provides better 3-D shape fitting when tracking 
vehicles 2 and 4 than that of the approach [6]. It is because 
the estimation of pose parameters in [6] is inaccurate due to 
the constant variance. Figure 6 shows some snapshots of two 
approaches when partial occlusion happens. In frame 47, the 
performance of the proposed systems is as well as the 
approach [6]. As for frame 52 and 58, our system performs 
outstandingly, while the approach [6] not only loses tracking 
but also fails the fitting of the 3-D vehicle model. The reason 
is that non-occluded kernels are able to be tracked while 
binding with occluded kernels. Figure 7 shows the results of 
the dataset 2, which contains total occlusion case. The 
results show that our system resumes tracking vehicle 0 and 
maintain the 3-D geometry after the occlusion. The approach 
[6] is able to track vehicle during occlusion, but cannot 
maintain 3-D geometry of the vehicle (frame 86). Figure 8 
shows the results of two approaches in our dataset 4, which 
has totally 50 vehicles for testing the robustness of the 
systems.  

To further measure the performance of the system, a 
quantitative metric is defined for evaluation. We manually 
build 3-D models of vehicles with best fitted pose para-
meters to construct the ground truth. Then, the average error 
of the tracking is defined as the distance between the all 
vertices of the tracked results and those of the ground truth: 

  
15

0
i i

i
Average Error x g

=

= −∑ ,                 (6) 

where xi is the world coordinate of the vertex of the modeled 
3-D vehicle and gi is the world coordinate of the ground 
truth. Table II shows the overall average error per vehicle in 
terms of meter. Totally 65 vehicles are tested in our 
experiments. Our proposed approach performs more 
accurately on fitting vehicles, especially when vehicles are 
partially or totally occluded (as reflected by the peak errors 
in all 4 datasets). 
 

5. CONCLUSION 
 
This paper proposes a novel vehicle tracking system in a 
single surveillance camera. The proposed system not only 
utilizes KCMK tracking technique to track vehicles, but also 
takes advantage of 3-D vehicle model to improve the 
tracking results. By estimating vehicle geometry based on 
the well-fitted 3-D model, we are able to obtain more 
specific and reliable information for further processing. 
 
 
 
 

TABLE I.  SIMILARITY SCORE OF THE COMPARISON 
 01 02 03 04 05 06 07 08 09 10 

01’ 0.7610 0.5736 0.5043 0.5568 0.5008 0.5171 0.5910 0.4938 0.5646 0.5636 
02’ 0.5862 0.7706 0.4839 0.4963 0.4841 0.5052 0.5365 0.4901 0.5341 0.5104 
03’ 0.4871 0.4580 0.7557 0.5070 0.5363 0.5133 0.5126 0.4336 0.4873 0.4990 
04’ 0.5949 0.5238 0.5818 0.7719 0.5530 0.5287 0.5994 0.5014 0.5446 0.56657 
05’ 0.5333 0.5279 0.5600 0.5400 0.7707 0.5519 0.5852 0.4910 0.5361 0.5165 
06’ 0.5039 0.4890 0.5385 0.4696 0.5544 0.8534 0.5527 0.4834 0.5398 0.5592 
07’ 0.5910 0.5147 0.5150 0.5569 0.5615 0.5718 0.7606 0.5292 0.5408 0.5271 
08’ 0.5052 0.4784 0.4617 0.5086 0.4990 0.5087 0.5420 0.7600 0.4994 0.4929 
09’ 0.5845 0.5235 0.4861 0.4762 0.5007 0.5382 0.5666 0.4730 0.8018 0.5613 
10’ 0.5410 0.4990 0.5022 0.5083 0.4977 0.5603 0.5362 0.4579 0.5805 0.8415 

TABLE II.  AVERAGE ERROR (IN TERMS OF METER ) 
 Proposed system Approach in [6] 

Ave. error (m) 3.172 4.729 
 

 

 
Figure 5. Tracking results in our dataset 1 by our proposed system (upper 
row), and by particle-filter-based method [6] (bottom row). 

 

 
Figure 6. Tracking results in our dataset 2 by our proposed system (upper 
row) , and by particle-filter-based method [6] (bottom row). 

 

  
Figure 7. Tracking results in our dataset 3 by our proposed system (upper 
row) , and by particle-filter-based method [6] (bottom row). 

 

 
Figure 8. Tracking results in our dataset 4 by our proposed system (upper 
row), and by particle-filter-based method [6] (bottom row). 
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