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ABSTRACT

In this paper, we propose a new feature, Distance Map of
Various Weights (DMVW) based on distances between rows’
textures, to perform tracking. The proposed new feature pro-
vides an effective object appearance model which is both
illumination-invariant and robust to occlusion. We also de-
velop a 2D PCA based method to effectively evaluate the new
feature. We demonstrate the validity of the rows’ or column’s
weights in computing 2D PCA subspaces. To balance the
importance of local and global information, we define a coef-
ficient to revise the locality extent of the proposed feature. A
new method based on entropy of candidate state evaluation is
proposed to select the most discriminative coefficient. Exper-
imental results on challenging video sequences demonstrated
the effectiveness of our method.

Index Terms— tracking, particle filter, 2D PCA

1. INTRODUCTION
Object tracking is an important research field in computer vi-
sion and is able to provide the basis for higher level process
such as motion understanding and human-machine interac-
tion. To obtain promising tracking results, various features
are adopted, such as sparse representation [1, 2], fragment
[3], Harr-like feature [4], super pixel [5], etc. Histogram is
a robust feature in representing the object appearance [6].
The spatial information, however, is lost in color histogram
which makes the tracking easily influenced by camouflage
objects nearby. To represent the relations of the points in dif-
ferent spatial positions, subspace is adopted [7]. Usually, ob-
ject tracking is performed based on single feature [6, 7]. In
many conditions, however, using multiple features makes the
tracking results more robust. The VTD [8] algorithm decom-
poses object appearances to various components to tackle dif-
ferent tracking challenges. Generally traditional methods do
not consider the components’ distances as feature and fail to
tackle some challenges, e.g. drastic light variation. Distance
based features, however, is able to tackle the light variation
problem etc. effectively. Some researchers perform track-
ing with heat kernel and the distances between object sub
image pixels are utilized to represent the relations between
the pixels [10]. Distances between samples are also impor-
tant in representing the relations of samples. When obtain-

ing the distances between samples, MDS (Multidimensional
Scaling) is able to reconstruct the samples (with translation
invariance, etc.) [9]. Distance based discriminative models,
i.e. distances between foreground samples and background
samples, are also proposed to determine object states [14, 15,
18].

The work presented here focuses on distance based fea-
tures. Distances between pixels are also considered in [10].
However, different from [10], our feature need not perform
spectral decomposition on high dimension matrix and thus is
able to be obtained efficiently. The work in [14, 15, 18] also
utilize distance information. But these work represent the re-
lations between samples, while our work considers the rela-
tions between sample’ components. Thus, our method is able
to tackle the light variations and occlusions more effectively.

To represent the local appearance effectively, we divide
the object appearance into patches. For each patch, for effi-
ciency we only utilize the distances between row textures to
construct the DMVW feature. A coefficient is defined to rep-
resent the locality extent of the DMVW feature. The entropies
of a set of candidate states’ likelihoods are able to represent
the discriminative ability of the feature effectively. Thus, we
utilize the entropies to select the optimal locality extent coeffi-
cient. 2D PCA is adopted for efficient evaluation of the object
state. The key contributions of this paper are as follows.
(1) We propose a new feature, DMVW, which utilizes the

benefit of distance information and represents effectively
the local and global information of the object appearance.

(2) We use the entropy of candidate states’ evaluations to se-
lect the optimal locality extent coefficient. The entropy
represents the discriminative ability of the feature effec-
tively.

(3) We demonstrate the validity of the rows’ or column’s
weights in computing 2D PCA subspaces.
The rest of our paper is organized as follows: Section 2

gives a short discuss of the particle filter we use in this pa-
per. In Section 3, we construct and evaluate the proposed
DMVW feature. Experimental results are shown in Section 4
and conclusion and future work are made in Section 5.

2. PARTICLE FILTER BASED FRAMEWORK
In this paper, we adopt particle filter as the framework
for tracking. Particle filter is formed based on Bayesian
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Fig. 1: The flowchart of our system. Our system is under the particle
filter framework and contains two main parts. First, evaluate the
particles with the most discriminative feature (about l∗). Second,
update the subspaces about each l and select l∗.

formula [13]. Let Xx
t , Xy

t , Xsx
t , Xsy

t be the x, y posi-
tion and width and height scales of the object respectively,
then we define the object state in frame t with a vector
Xt = {Xx

t , X
y
t , X

sx
t , Xsy

t }. Given the observation sequence
O1:t+1, the object state’s posteriori probability density is
defined as
p(Xt+1|O1:t+1)∝p(Ot+1|Xt+1)

∫
p(Xt+1|Xt)p(Xt|O1:t)dXt. (1)

We warp linearly the sub image specified by Xt to a normal-
ized 32×32 sub image.

In each frame, we first sample some particles according
to (1), and then select the particle with the largest likelihood
πt = p(Ot|Xt) as the optimal state. The tracking is per-
formed on gray scale images. Detailed presentation of parti-
cle filter can be found in [13].

3. DISTANCE MAP OF VARIOUS WEIGHTS

To represent the local information of the target more effec-
tively, we divide the normalized sub image into 6×6 patches.
The neighbor patches are overlapped by each other. We obtain
DMVW feature for each patch independently. The features
are evaluated with 2D PCA method.

3.1. Constructing DMVW
We represent each patch’s appearance with distance informa-
tion which represents the relations between object compo-
nents effectively and is robust to light variation etc. To re-
duce the dimensionality of the feature, we only consider the
distances between row textures. For one patch, let NR be the
number of rows and ri be row i’s texture (Fig. 2). Then the
relation of ri and rj is defined as

ql(i, j) = exp(−||ri − rj ||2
NR

)
|i− j|l

ī
, (2)

where ī =
∑

j |i− j|l, and l ∈ R is a coefficient repre-
senting the feature’s locality extent. Enlarging l increases
the weights of ql(i, j) with large |i − j| and then makes
the feature represent more global information, and vice
verse. Then for the patch we form the DMVW feature
q̃l = [ql(0, 0), ql(0, 1), ..., ql(5, 5)]T .
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Figure 1. The flowchart of our system. Our system is under the 
particle filter framework and contains two main parts. First, evalu-
ate the particles with the most discriminative feature (about ). 
Second, update the subspaces about each  and select .

2. PARTICLE FILTER BASED FRAMEWORK 

Particle filter formed based on Bayesian formula is an effec-
tive searching principle [13]. In this paper, we adopt particle 
filter as the framework for tracking. Let , , ,
be the x, y position and width and height scales of the object 
respectively, then we define the object state in frame t with a 
vector = . Given the observation 
sequence , the object state’s posteriori probability 
density is defined as 

,(1) 

We warp linearly the sub image specified by  to a nor-
malized 32 32 sub image. 

In each frame, we first sample some particles according 
to (1), and then select the particle with the largest likelihood 

 as the optimal state. The tracking is per-
formed on gray scale images. Detailed presentation of parti-
cle filter can be found in [13]. 

3. DISTANCE MAP OF VARIOUS WEIGHTS 

To represent the local information of the target more effec-
tively, we divide the normalized sub image to 6×6 patches. 
The neighbor patches are overlapped by each other. We ob-
tain DMVW feature for each patch independently. The fea-
tures are evaluated with 2D PCA method. 

3.1. Constructing DMVW

We represent each patch’s appearance with distance infor-
mation which represents the relations between object com-
ponents effectively and is robust to light variation etc. To 
reduce the dimensionality of the feature, we only consider 
the distances between row textures. For one patch, let  be 
the number of rows and  be row i’s texture (Fig. 2). Then 
the relation of  and  is defined as 
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Figure 2. Object appearance and evaluations about l=1. (b) The 
DMVW (before being unfolded to vector) of the specific patch in 
(a). (c) Particle evaluations. (d) The normalized evaluations of (c). 
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patch we form the DMVW feature 

.
We denote patch ’s feature as , .

Then we obtain two matrices  and 
 to represent the object appearance. For 

conciseness, we omit the script of l in symbols normally. 
The appearance is evaluated with 2D PCA. 

3.2 Evaluating object appearance with 2D PCA 

2D PCA is an efficient model in representing the relations 
between matrix columns. Thus, we adopt 2D PCA [11, 12] 
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Fig. 2: Object appearance and evaluations about l=1. (b) The
DMVW (before being unfolded to vector) of the specific patch in
(a). (c) Particle evaluations. (d) The normalized evaluations of (c).

We denote patch (i, j)’s feature as q̃li,j , i, j = 0, . . . , 5.
Then we obtain two matrices M l,(2) = [q̃l0,0, q̃

l
0,1, ..., q̃

l
5,5]

and M l,(1) = M l,(2)T to represent the object appearance.
For conciseness, we omit the script of l in symbols normally.
The appearance is evaluated with 2D PCA.

3.2. Evaluating object appearance with 2D PCA

2D PCA is an efficient model in representing the relations be-
tween matrix columns. Thus, we adopt 2D PCA [11, 12] to
compute the subspaces U1 and U2 of M (1)

t and M (2)
t respec-

tively. For different l, 2D PCA is performed separately. We
define the mean of M (i)

t , t = 0, · · · , n+m as
M

(i)

m+n = sM
(i)

n + (1− s)M̃ (i) , i = 1, 2, (3)

where M̃ (i) is the mean of M (i)
t , t = n + 1, · · · , n + m,

s is a constant which defines the weight of historic informa-
tion. The covariance matrix D(i)

n of M (i)
t , t = 0, · · · , n is

computed in the similar way to the mean matrix. Then Ui is
spanned by D(i)

n ’s eigenvectors.
Different patches have different confidences. Based on

the confidences, we define patch (i, j)’s weights wi,j
0 and

wi,j
1 in updating subspaces and evaluating particles respec-

tively (Section 3.3). Let Wt =Diag
(
w0,0

1 , w1,0
1 , ..., w5,5

1

)
be

the weight matrix in time t for evaluating the particles. The
DMVW of different l have different abilities to discriminate
the object from the background. During tracking, we select
the most discriminative coefficient l∗ to evaluate the particles.
The distances between the object appearance specified by Xt

and Ui, i = 1, 2 are defined as

Et,1 =
∥∥∥Wt((M

(1)
t −M

(1)

t )−U1U
T
1 (M

(1)
t −M

(1)

t ))
∥∥∥
2
, (4)
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Et,2 =
∥∥∥((M

(2)
t −M

(2)

t )−U2U
T
2 (M

(2)
t −M

(2)

t ))Wt

∥∥∥
2
. (5)

Then the likelihood of Xt is

p(Ot|Xt) ∝
∑2

i=1
exp(−Et,i). (6)

The process of our method is shown in Algorithm 1. Next
we show the validity of the weights’ definition. That is, the
patches with larger weights play more important roles in com-
puting U1 and U2.

Proof. In this proof, we only consider offline conditions
and assume that there are 5 frames. Let the 6 × 6 patches’
appearance vectors and weights in frame t be v′t,i and w′i (as-
sume invariant), i=0, 1,· · · ,35 respectively. We define

M
(2)
t −M (2)

t = [v′t,0, v
′
t,1, · · · , v′t,35]. (7)

Then U2 is spanned by the eigenvectors of

D
(2)
4 = C1

∑4

t=0

∑35

i=0
w′

2
i v
′
t,iv
′T
t,i, (8)

where C1 is a constant. From (8), we see that patches with
larger weights can be considered to have more samples, and
then are more important in computingU2. So we have demon-
strated the validity of patches’ weights in computing U2.

Then we show the validity of weights w′i,i = 0, 1, · · · , 35

in computing U1. According to M (1)
t ’s definition, we obtain

M
(1)
t −M (1)

t = [v′t,0, v
′
t,1, · · · , v′t,35]T . (9)

U1 factually is the subspace of the column vectors of
Diag (w′0, ..., w

′
35) (M

(1)
t −M (1)

t ), t = 0, · · · , 4. The data
of the i-th patch vector corresponds to the i-th entries of the
column vectors. Larger w′i tends to enlarge the data vari-
ance and then the subspace is more likely to be influenced
by the i-th entries. Thus, we have shown the validity of w′i,
i= 0, 1, · · · , 35 in computing U1. So we have demonstrated
the validity of w′i, i = 0, 1, · · · , 35 in computing U1 and U2

(in offline conditions). f

3.3. Weights of patch

Different patches generally vary to different extents, and the
variation condition is able to represent the confidence of the
patch. Thus, we define the patches’ weights according to the
variation conditions (probability density). For different l, the
weights are defined separately. The patch variation in the pre-
vious frame can represent the occlusion condition effectively.
For patch (i, j), let q̄i,j and vi,j be the mean and variance of
q̃i,j of all frames. Then given the patch vector qi,j in frame t,
the patch’s weight in frame t+1 is defined as

wi,j
1 ∝ 1/(

√
2πvi,j) exp{−||qi,j − qi,j ||22/(2vi,j)}. (10)

When updating the system, we need to store new samples.
Same with the evaluation of particles, we check the current
frame’s sample only based on DMVW of l∗. For patch (i, j),
if ||q̃i,j − qi,j ||22 < αvi,j , we consider patch (i, j) is valid,
where α is a constant. If the number of valid patches (0∼36)
is larger than a threshold, we consider the current frame is

valid and store the current frame’s DMVW of all l for sys-
tem updating, otherwise the current sample is dropped. The
system is updated every 5 valid frames.

We define the patches’ weights in computing U1 and U2

according to the stored samples. For different l, the patch’s
weights are defined separately. Assume patch (i,j)’s weights
of stored sample k is w′i,jk , then we define wi,j

0 as the mean of
w′i,jk , k = 0, · · · , 4.

3.4. Selecting l∗

We utilize particles’ evaluations to select l∗. Generally, better
l makes the evaluations of particles more different from each
other. Entropy is able to represent the difference between par-
ticles’ evaluations effectively. Thus, we use entropy to select
l∗. We define gl,i as the evaluation of particle i about l, Np

as the particle number and glmax and glmin as the largest and
the smallest values of gl,i, i=0, . . . , Np−1 respectively. Let
g̃l,i =gl,i−glmin, and g̃l,i, i=0, . . . , Np−1 is normalized with
the sum to 1 constraint. Then g̃l,i is able to be considered as
probability and fulfills the condition of entropy. Sometimes
glmin is large compared with glmax − glmin, which makes the
entropy based evaluation of l not effective. Thus, we use g̃l,i

not gl,i to compute the entropy about l (Fig. 2(c)(d))

H l = −
∑

i
g̃l,i log(g̃l,i). (11)

For each valid frame, we save the entropy about each
l. Every 5 valid frames, we compute the mean H̃ l of the
5 entropies about l. Normally the smaller H̃ l is, g̃l,i, i =
0, . . . , Np−1 are more different from each other, and the par-
ticles are more easily discriminated from each other, and vice
verse. Thus we select the l with smallest H̃ l as l∗.
Algorithm 1 The process of our method.

Tracking: For each frame t, do:
1) Sample particles with particle filter.
2) Find the optimal particle with (6).
Updating:
1) Check if the current frame is valid with DMVW of l∗.
2) If current frame is valid, save the frame’s features of all
l. Update Wt.
3) Select new l∗ with (11) every 5 valid frames.
4) Update the 2D PCA subspaces corresponding to DMVW
of each l every 5 valid frames.

4. EXPERIMENTS

We implemented our method in C++ and evaluated it on 5
video sequences involving multiple challenges, such as light
variation, occlusion, etc. The experiments were conducted on
a PC with a 2.53 GHz Intel CPU with 2GB RAM. For each ex-
periment of our method, the object state in the first frame was
manually set, and the system was updated every 5 saved sam-
ples. We created 200 particles per frame during tracking and
defined s as 0.95-0.98. We defined three kinds of locality ex-
tent coefficients, i.e. l=0,1,2. The running time of our method
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(a) Walking woman1. Pose variation. 

(b) Walking woman2. Camouflage. 

Figure 3: Comparison between l=0, 1, 2 and our method.
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Figure 4: Selection of optimal l, i.e. .

Every 5 valid frames, we compute the mean  of the 5 en-
tropies about l. Normally the smaller  is, ,

 are more different from each other, and the 
particles are more easily discriminated from each other, and 
vice verse. Thus we select the l with smallest  as .

4. EXPERIMENTS 

We implemented our method in C++ and evaluate it on 5 
video sequences involving multiple challenges, such as light 
variation, occlusion, etc. The experiments were conducted 
on a PC with an 2.53 GHz Intel CPU with 2GB RAM. For 
each experiment of our method, the object state at the first 
frame was manually set, and the system was updated every 5 
saved samples. We created 200 particles per frame during 
tracking and defined s as 0.95~0.98. We defined three kinds 
of locality extent coefficients, i.e. l=0,1,2. The running time 
of our method was around 1.4 sec/frame. The videos we 
tested were from [16] and [17]. We adopted the Euclid dis-
tance between the object bounding box’s center and the 
ground truth to represent the tracking error. 
    In Fig. 3, we tested our method in using different locality 
extent coefficients, i.e. l=0,1,2. Smaller l represented the 
local information effectively, while larger l was able to rep-
resent the global information effectively. By selecting the 
most discriminative l, our method was able to discriminate 
the foreground from the background more effectively, and 
thus was able to obtain more accurate object states. Fig. 4 
showed the selections of the optimal l in the two videos of 
Fig. 3. The average errors and the error maps of the 4 meth-
ods were shown in Tab. 1 and Fig. 6 respectively.

In Fig. 5, we compared our method with 5 other methods 
which adopted different appearance models: Camshift, IVT, 
VTD, LDA and GE [15]. In Fig. 5, the object appearance 
experienced drastic light variation. The color histogram of 
Camshift changed largely, which made Camshift influenced 
by nearby similar colors and lose tracking. IVT represented 
object appearances with linear subspaces. However, when 
the light varied largely, the subspaces failed to represent the 
distributions of the samples accurately and made the method 
gradually drifted away. VTD utilized various features to  

Table 1. Average errors about the 4 methods in Fig. 3 

l=0 l=1 l=2 Our method

Fig. 3(a) 7.0 6.7 7.5 6.5
Fig. 3(b) 28.8 7.6 7.8 6.3

Figure 5: Head. Comparison with 5 methods. Light variation. 
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Figure 7: Occlusion conditions in two videos about 2 walkers.
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similar color area existed nearby, the features were also in-
fluenced largely which made VT combined D not robust any 
more. LDA and GE were able to discriminate object from 
background effectively. But they failed to represent the dis-
tances between object components which were robust to 
light variation. Thus, the two methods were not able to track 
the object accurately. In contrast, our proposed DMVW fea-
ture took advantage of the robust distance information be-
tween row textures in light variation condition. Thus, our 
method was able to track the object robustly. The error maps 
of the 6 methods were shown in Fig. 6, and the average er-
rors of Camshift, IVT, VTD, LDA, GE and our method were 
111.8, 62.3, 30.9, 11.4, 8.4 and 4.6 respectively. Moreover, 
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Table 1: Average errors about the 4 methods in Fig. 3

l=0 l=1 l=2 Our method

Fig. 3(a) 7.0 6.7 7.5 6.5
Fig. 3(b) 28.8 7.6 7.8 6.3

was around 1.4 sec/frame. The test videos we used were from
[16] and [17]. We adopted the Euclidean distance between the
object bounding box’s center and the ground truth to represent
the tracking error.

In Fig. 3, we tested our method in using different lo-
cality extent coefficients, i.e. l=0,1,2. Smaller l represented
the local information effectively, while larger l represented
the global information effectively. By selecting the most dis-
criminative l, our method was able to discriminate the fore-
ground from the background more effectively, and thus ob-
tained more accurate object states. Fig. 4 showed the selec-
tions of the optimal l in the two videos of Fig. 3. The average
errors and the error maps of the 4 methods were shown in Tab.
1 and Fig. 6 respectively.

In Fig. 5, we compared our method with other 5 methods
which adopted different appearance models: Camshift [6],
IVT [7], VTD [8], LDA and GE [15]. In Fig. 5, the object
experienced drastic light variation. The color histogram of
Camshift changed largely, which made Camshift influenced
by nearby similar colors and lose tracking. IVT represented
object appearances with linear subspaces. Due to the large
light variation, the subspaces failed to represent the distribu-
tions of the samples accurately and made the method grad-
ually drift away. VTD utilized various features to represent
the object. When light changed drastically and also similar
color area existed nearby, the combined features were also in-
fluenced largely which made VTD not robust any more. LDA
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 are more different from each other, and the 
particles are more easily discriminated from each other, and 
vice verse. Thus we select the l with smallest  as .
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We implemented our method in C++ and evaluate it on 5 
video sequences involving multiple challenges, such as light 
variation, occlusion, etc. The experiments were conducted 
on a PC with an 2.53 GHz Intel CPU with 2GB RAM. For 
each experiment of our method, the object state at the first 
frame was manually set, and the system was updated every 5 
saved samples. We created 200 particles per frame during 
tracking and defined s as 0.95~0.98. We defined three kinds 
of locality extent coefficients, i.e. l=0,1,2. The running time 
of our method was around 1.4 sec/frame. The videos we 
tested were from [16] and [17]. We adopted the Euclid dis-
tance between the object bounding box’s center and the 
ground truth to represent the tracking error. 
    In Fig. 3, we tested our method in using different locality 
extent coefficients, i.e. l=0,1,2. Smaller l represented the 
local information effectively, while larger l was able to rep-
resent the global information effectively. By selecting the 
most discriminative l, our method was able to discriminate 
the foreground from the background more effectively, and 
thus was able to obtain more accurate object states. Fig. 4 
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and GE were able to discriminate object from background ef-
fectively. But they failed to represent the distances between
object components which were robust to light variation. Thus,
the two methods were not able to track the object accurately.
In contrast, our proposed DMVW feature took advantage of
the robust distance information between row textures in light
variation condition. Thus, our method was able to track the
object robustly. The error maps of the 6 methods were shown
in Fig. 6, and the average errors of Camshift, IVT, VTD,
LDA, GE and our method were 111.8, 62.3, 30.9, 11.4, 8.4
and 4.6 respectively. Moreover, as Fig. 7 showed, by setting
the patches’ weights according to occlusion conditions, our
method also tackled the occlusions effectively.

5. CONCLUSION AND FUTURE WORK

This paper has proposed a new feature DMVW to perform
object tracking. The DMVW feature took advantage of the
distance information between different object components,
and was robust to light variation, etc. 2D PCA was adopted
to obtain the optimal state and we demonstrated the validity
of patches’ weights in updating 2D PCA subspaces. We also
proposed a novel method to select the most discriminative
locality extent coefficient. Experiments showed our method’s
effectiveness. In the future, we will continue to research
more effective features based on distance information. (This
work is partly supported by NSFC (Grant No. 60935002,
61100099, 61100147), the National 863 High-Tech R&D
Program of China (Grant No. 2012AA012504), the Nat-
ural Science Foundation of Beijing (Grant No. 4121003),
and The Project Supported by Guangdong Natural Science
Foundation (Grant No. S2012020011081), NSF of Zhejiang
Province (Grant No. LY12F03016).)
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