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ABSTRACT 

 

This paper proposes the use of the Iterated Extended Kalman Filter 

(IEKF) in a real-time 3D mapping framework applied to Microsoft 

Kinect RGB-D data. Standard EKF techniques typically used for 

3D mapping are susceptible to errors introduced during the state 

prediction linearization and measurement prediction. When models 

are highly nonlinear due to measurement errors e.g., outliers, 

occlusions and feature initialization errors, the errors propagate 

and directly result in divergence and estimation inconsistencies. To 

prevent linearized error propagation, this paper proposes repetitive 

linearization of the nonlinear measurement model to provide a 

running estimate of camera motion. The effects of iterated-EKF are 

experimentally simulated with synthetic map and landmark data on 

a range and bearing camera model. It was shown that the IEKF 

measurement update outperforms the EKF update when the state 

causes nonlinearities in the measurement function. In the real 

indoor environment 3D mapping experiment, more robust 

convergence behavior for the IEKF was demonstrated, whilst the 

EKF updates failed to converge.  

 

Index Terms— Iterated Extended Kalman Filter, 3D 

Reconstruction, Kinect 

 
1. INTRODUCTION 

 
Over the last few decades, the Extended Kalman Filter (EKF) 

algorithm for real-time camera motion estimating is one of the key 

technologies for Simultaneous Localization and Mapping (SLAM) 

in robotic automation and computer vision [1~6]. In the EKF-

SLAM process, the performance and convergence of the estimates 

are mainly influenced by two error effects. First, the feature 

initialization uncertainty is a problem critical to the EKF that 

precipitates immediate and substantial estimation inconsistency. 

Second, the EKF linearization of the non-linear state and 

measurement model has the potential to introduce errors that will 

be propagated during the evolution.  

MonoSLAM [1] presents promising results by using a standard 

extended Kalman filter to perform real-time motion and structure 

estimation from a single camera. As the depth is unknown, 

MonoSLAM evaluates the depth of an observed feature using a 

particle filter; however, this approach causes a delay of a few 

frames. Civera et al. [2] and Montiel et al. [3] proposed an inverse 

depth parametrization for single camera SLAM that permits 

efficient representation of Gaussian linearity of 3D feature points 

during initialization and within the EKF. Assuming that the image 

measurement process is nearly linear, inverse depth 

parametrization can process features from nearby to infinity.   

Recent RGB-D cameras, such as the Microsoft Kinect, provide 

synchronized color and per-pixel depth information in real-time. 

By using a depth sensor, the Kinect avoids the complexity of 

robust visual correspondence computation for depth estimation 

from stereo matching. The depth sensor consists of one IR 

projector and one IR camera, and the relative geometry between 

the IR image and the projector pattern can be easily measured. The 

depth data output by the Kinect for each frame is the ‘true’ 3D 

information that addresses the long-standing problem of real time 

feature initialization in EKF processing for camera motion and 3D 

structure estimation.   

In the Kinect SLAM 3D mapping approaches, Huang et al. [4] 

proposed an autonomous flight system for visual odometry and 

mapping using the EKF-SLAM on Kinect cameras. Henry et al. [5] 

proposed RGB-D mapping framework that built dense 3D maps of 

indoor environments through TORO, an optimization tool 

developed for SLAM. Hervier et al. [6] built an accurate 3D map 

based on the estimated covariance of the Iterative Closest Point 

(ICP) and the data fusion by EKF with a Kinect sensor and a three-

axis gyroscope. In the approaches of [4-6], the EKF linearizes the 

measurement prediction and all unknown transformations in the 

state prediction using series expansion, substituting Jacobian 

matrices for linear transformations in the Kalman filter. However, 

such linearizations assume that the prediction errors can be well 

approximated by a linear function. If this condition cannot be 

satisfied, the errors will propagate and directly result in divergence 

of the estimations.  

To overcome the disadvantages of existing EKF-SLAM 

mapping systems, this paper proposes the use of an IEKF-based 

SLAM algorithm to reconstruct 3D scene geometry in real-time 

using the RGB-D data from a Kinect camera. The proposed 

approach re-linearizes the measurement equation by iterating an 

approximate maximum a posteriori (MAP) estimate around the 

updated state, rather than relying on the predicted state. This paper 

follows the standard Kalman Filter processing steps including 

initialization, prediction and update.  In addition, the paper 

proposes the management of feature points to control the number 

of points in the map by dynamically adding visible features with 

reliable 3D information or removing the occluded features during 

the evolution. To alleviate feature outlier errors, the robust 

estimation algorithm RANSAC [8] is employed to remove the 

effect of mismatched points. Efficient rendering of complex 

geometric objects is then performed using surfel (surface element) 

[9] representations of the depth data. To evaluate the proposed 

IEKF approach, a simulation based on a synthetic map and 

landmark data [7] compares the performance and consistency of 

the standard EKF and proposed IEKF algorithms under variant 

image measurement noise. The IEKF is then applied to the 3D 

mapping of a real indoor environment to compare the convergence 
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behavior of the IEKF compared to the EKF in realistic 

environmental conditions.  

In the following, the proposed IEKF approach is presented in 

Section 2. Section 3 then presents and discusses the simulation and 

real 3D space mapping experiments and results, whilst Section 4 

concludes the paper. 

 
2. METHOD 

 

2.1 State Vector Definition 

 
The general problem of parameter estimation from discrete 

nonlinear measurements can be described as: 

                                
11 −− += kkkk wsfs                                     (1) 
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where the dynamic model in Eq.(1) describes how the state vector s 

evolves in each time step k by the state transition function f and the 

process noise w. In Eq. (2), the measurements z are expressed as a 

function h of the unknown state s, plus measurement noise v. The 

process and image measurement noise are both assumed to be zero 

mean multivariate Gaussian noise with covariance matrices Q and 

B. The state vector is accompanied by a single covariance matrix L 

and in this paper, state vector ŝ is composed of the camera motion 

information and the 3D point locations: 
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The dynamic model applied to the camera motion information is: 
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where the camera’s state vector 
vŝ comprises a metric 3D 

translation vector t, camera rotation/orientation represented by a 

3D Euler angle representation θ =[ θx θy θz]
T, translational velocity 

vector t&and rotational velocity vector θ& . This paper uses the ‘hat’ 

in 
vŝ to indicate an estimate of sv. The 3D feature points locations 

are stored as: T

iiii ZYXM )(ˆ = .  

 
2.2 Feature Initialization 

 
The feature points from images are detect use the Scale Invariant 

Feature Transform (SIFT) [10], where this paper utilizes the 

SIFTGPU package [11]. The points with valid Kinect point depth 

are selected as key points; in particular, the visibilities of the 

feature points are constrained by the back-projections of the 

corresponding 3D points within the range of the image. The feature 

points on the two consecutive images are matched with the Zero-

mean Normalized Cross-Correlation (ZNCC) algorithm. Typically, 

these matched feature points contain a fair number of outliers. In 

this paper, the robust estimation algorithm RANSAC [8] is 

employed to remove the effect of mismatched points (outliers). The 

classification is done by employing a cost function together with a 

threshold which depends on the expected measurement noise. This 

threshold is directly correlated with the number of feature points. 

To ensure real-time processing without trading off on accuracy, the 

number of inliers N is bounded around 50 for each time step in 

practice.  

The 3D feature point in a world coordinate system is 

represented by the homogeneous vector M=[X,Y,Z,1]T, and the 

feature point in an image is represented by m=[x,y,1]T
. Camera and 

image coordinates are related by the perspective projection 

equations: 
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where fx and fy are the distances from the centre of projection to the 

image plane, [x0,y0]
T is the coordinate of the camera centre, d is the 

depth of the image point m=[x,y,1]T and  mC = [xC ,yC,1]T is the 

camera coordinate of m. Thus, 3D point M can be estimated from: 

                                            M = R-1mC +t                                    (6) 

where R is the rotation matrix representation of the Euler angle 

rotation θ =[ θx θy θz]
T, and t is the translation vector; both t and R 

are estimated by the proposed IEKF approach for each time step. 

Upon system initialization, the first image centre is assumed as the 

origin point, with θ= [0 0 0]T and t=[0 0 0]T. The initial 3D feature 

points can then be obtained from Eq. (6).  

 
2.3 Feature Points Management 

 

In this paper, feature points can be dynamically added to the map 

when new landmarks are required (if N<50), and can also be 

deleted if features are invisible. For example, using three images to 

illustrate the proposed feature management: in the first two images, 

a process matching the SIFT feature points sets up a matched flag 

for each matched point (xi1 and xi2). For each new time step 

(adding a new image) in the system, the second/last image and the 

third/new image feature points are matched first. Then, the 

matched points are checked in the second/last image, if the match 

flag for one certain point is already true, that means this point xi3 in 

the third image is in the same track of xi1 and xi2, corresponding to 

the same 3D point Xi.  Thus, the 3D feature point and 

corresponding covariance matrix in the last time step are assumed 

as initial values of the point in the third image. A feature is deleted 

(3D feature point and the covariance matrix are deleted) from the 

system if a match point cannot be found in the new image.  

New features are only added into the system if the number of 

features in the current time step is less than the threshold N. With a 

perspective camera, the position at which the feature is expected to 

be found in the image has the form: 

                                             h= (x,y)T                                                             (7) 

The state covariance after initialization is: 
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The state covariance is initialized as: 

      [ ]22
3333 )()(00

diagdiagdiagdiagkk
tdiagP θδδ &&=                          (9) 

where diag3 means the 3×3 diagonal matrix, t&δ and θδ & are standard 

errors of t& and θ&which are predefined. G can be calculated from: 
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In Eq. (10), the image measurement noise covariance B is taken to 

be diagonal with the magnitude determined by the measurement 

noise.  

2.4 Prediction 

In the prediction stage, the motion model follows the standard EKF 

[1]. The predicted state and covariance estimates have the form: 
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The new state estimate is: 
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∆T is time step, )( kq θ means the quaternion representation of θk, 

and t&δ and θδ & are zero-mean Gaussian distributed noise coming 

from an impulse of acceleration and angular acceleration, 

respectively. 

The process noise covariance Q has the form: 
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where T
TTtw )( ∆∆= θδδ &&  is the process noise vector.                          

Pn is the covariance of noise vector w, and it has the form: 
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The image position of each feature is initialized by:  

                                   ))(( kkC tMRh −=                               (17) 

Then the estimate of the feature on image has the form: 
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where the Jacobian of h is:
s

h
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2.5 Update 

 

The IEKF update is based on the Gauss Newton algorithm. The 

update optimally minimizes the cost function of EKF in a second 

order Taylor series about the i-th iterated value of the estimate of 

sk, denoted as i

ks . The update of IEKF is: 
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As a result, the IEKF repeatedly calculates an intermediate 

posterior state i

kŝ , where i is the iteration number. The IEKF starts 

from the prior state, where
1

0 ˆˆ
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PP . At 

each iteration, the estimate and covariance matrix of the previous 

iteration are used as the new a priori information. When the 

consecutive values differ by less than a preselected threshold or 

after a certain number of iterations, the iterations are stopped. In 

this paper, trading off between estimation accuracy and 

computational cost, the maximum number of iterations is set as 30 

in practice.  

 

2.6 Surface Merging 

 

Motivated by [9], surface merging based on surfel representation is 

performed using two operations: surfel update and surfel addition. 

A surfel is updated when the new surfel satisfies three conditions: 

(1) if the depth of the surfel is valid, the re-projection of this surfel 

is in the range of the current image; (2) if the normal angle 

between the new and old camera principal axes is less than the pre-

defined maximum angle of 60º, the surfel is considered as visible 

in the new image. (3) if two different surfels correspond to the 

same object, comparing the depth value of existing and new 

surfels,  the one closer to the camera is considered as visible. 

Otherwise, if condition (1) cannot be satisfied, this surfel is 

omitted. If conditions (2) or (3) cannot be satisfied, this surfel is 

removed from the surface queue. After all existing surfels have 

been updated, surfels are added in the regions where the new depth 

map is not covered by existing surfels. 

 

3. EXPERIMENTS AND RESULTS 

 

Two experiments are conducted to validate the improvement of 

consistency and robustness through repetitive linearization of the 

nonlinear observation model in EKF-SLAM algorithm. In the first 

experiment, a simulator with the synthetic map and landmarks is 

used to keep the system as simple as possible to demonstrate the 

influence of system noise on the estimation consistency. Then, a 

real room environment 3D mapping application presents that the 

IEKF can increase the robustness of convergence against error 

propagation. 

 

3.1 Simulation 

A range and bearing camera model [12] with synthetic map and 

landmark data was used to compare the consistency between EKF 

and IEKF under variant image noise. The camera’s true trajectory 

is known as a circle of centre (0, 20)m and 20m radius. The 

landmarks that are visible in the semi-circular field of view of the 

camera are selected in each time step. The experimental parameters 

are set with 2/0.1 smt =&δ , 2/0.3 srad=θδ & , δv=1.0 pixels and 

∆T=0.1s where the measurement noise is assumed to be 3 pixels 

(δv=3.0 pixels).  

Assuming the z axis as zero, where the camera only moves on 

the x-y coordinate system, the camera state at time step k is 

simplified into the form: 
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The Normalised Estimation Error Squared (NEES) method [7] is 

used to characterize the filter performance: 
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where sk is the ‘true’ state vector from the synthetic data and 
kk

ŝ is 

the estimated value. Each filter was run for two loops of the 

trajectory and each simulation was repeated 50 times. Figs. 1 and 2 

show the NEES results of EKF and IEKF averaged over the 50 

simulation repetitions, where x and y axes indicate time step and 

NEES error, respectively (the total number of time steps is k = 

277). In Fig. 1, the NEES of EKF has a quick increase from k = 

[50,150], maintaining this high error level NEES until the 

simulation finishes. When k = [100, 150], the camera closes the 

first loop. In the second loop, the measurement error is 

accumulated, and EKF maintains this error into the second loop. In 

Fig. 2, the NEES of IEKF peaks when the camera closes the first 

loop then quickly converges; thus, it can be seen that the IEKF 

observations are more accurate than EKF since NEES mean value 

is 33.1 lower than the EKF.  

In the second experiment, measurement noise of δv=3.0 pixels 

is added, whilst all other parameters are kept unchanged. Figs. 3 
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and 4 are the NEES of EKF and IEKF, respectively. In comparison 

to Figs. 1 and 2, the mean NEES values of both algorithms show 

an increase: the EKF increases from 78.87 to 1289.63, whilst the 

IEKF increases from 33.1 to 79.23. IEKF shows a better 

consistency against increased measurement noise compared to EKF. 

  

3.2 3D Mapping 

 

To evaluate the proposed IEKF approach, this paper performed 3D 

reconstruction of a real room environment using a Microsoft 

Kinect; the movement is estimated in real-time by EKF and IEKF 

respectively. The Kinect is fixed on a trolley whose wheels can 

only move back and forth. In the experiment, the trolley moves in a 

circle of radius 0.6m with the left wheel of the trolley along the 

edge of circle. This paper uses a free moving camera model with 

constant velocity smt /0=& and constant angular velocity 

srad /0=θ& . The acceleration 2/007.0 smt =&δ  and angular 

acceleration 2/001.0 srad=θδ &  and the image noise is 1 pixel 

and ∆T = 1s.  

Figs. 5~8 show the Kinect trajectory estimate with an unknown 

scale and 3D mapping results of the EKF and IEKF. EKF assumes 

that the system noise is Gaussian, and represents the state 

uncertainty by approximate mean and variance. However, this 

approximation is not an adequate description, and the EKF 

linearization of the non-linear model cannot accurately match the 

true state following initialization, as shown in Fig.5. The errors are 

propagated with increasing time steps, which leads to a 

discontinuity failure in the left half circle. The camera motion 

measurement error thus directly impacts the 3D reconstruction 

result, as shown in the EKF result of Fig. 7. In Fig. 7, the 3D map 

shows reconstruction inconsistencies at the beginning and fails in 

the left side of the room when errors accumulated. In the IEKF 

results Fig. 6 and 8, the IEKF benefits from the re-linearization of 

the measurement model. The reconstruction in Fig. 6 is complete 

and the rectangle shape of the room in Fig. 8 is better than EKF 

result in Fig. 7. In the experiment practice, we find the eventual 

inconsistency of both algorithms is inevitable as time progresses; 

however, the proposed iterated version of the EKF shows increased 

convergence robustness against error propagation. 

  
4. CONCLUSION 

 

This paper proposed the use of an IEKF-based SLAM algorithm 

for real-time reconstruction of 3D scene geometry recorded with 

RGB-D data from a Kinect camera. Simulation results show 

improved estimation consistency and more accurate state 

estimation of IEKF over the EKF algorithm when the image 

measurement noise increases. Further, results obtained from 3D 

mapping experiments of a real indoor environment validate the 

improvement of state estimate consistency by comparing the 

proposed iterated EKF with the standard EKF technique, where 

more robust convergence behavior for the IEKF was demonstrated, 

whilst the EKF updates failed to converge. 

   
  Fig. 5 EKF trajectory (m)       Fig.6  IEKF trajectory (m) 

 

     
           Fig.7 EKF Top View    Fig.8 IEKF Top View 

 
Fig. 1. The State NEES of EKF ( δv=1.0 pixels ) 

 
Fig. 2. The State NEES of IEKF ( δv=1.0 pixels ) 

 
          Fig. 3. The State NEES of EKF (δv=3.0 pixels) 

 

         Fig.4. The State NEES of IEKF (δv=3.0 pixels) 
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