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ABSTRACT

We propose a novel correlation-based incremental tracking

algorithm based on the combination of principal component

analysis (PCA) and canonical correlation analysis (CCA),

which called Principal Component-Canonical Correlation

Analysis (P3CA) tracker. We utilize CCA to evaluate the

target goodness, resulting in more robust tracking than using

holistic information, especially in handling occlusion. PCA is

adopted to solve the Small Sample Size (3S) problem and re-

duce the computation cost in the generation of CCA subspace.

To account for appearance variations, we propose an online

updating algorithm for P3CA tracker, which updates the PCA

and CCA cooperatively and synchronously. Comparative

results on several challenging sequences demonstrate that

our tracker performs better than a number of state-of-the-art

methods in handling partial occlusion and various appearance

variations.

Index Terms— Principal Component-Canonical Correla-

tion Analysis, Small Sample Size problem, Adaptive appear-

ance model, Visual tracking

1. INTRODUCTION

While numerous tracking methods have been proposed with

demonstrated success in recent years, designing a robust

tracking method is still an open problem, especially consid-

ering various complicated variations that may occur in real

world condition, e.g., scale and pose change, illumination

variation, occlusion, cluttered scenes, etc. One of the main

reasons is the lack of the effective object appearance models,

which play a significant role in visual tracking, to account for

the appearance variation.

In existing tracking methods, most algorithms model the

object appearance either by global descriptors or local de-

scriptors. Color histogram [1, 2] is one of the most widely

used global descriptor for its effectiveness and efficiency.

Other global appearance models, based on raw pixel values,
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are widely adopted in [3, 4, 5, 6]. Although these methods

mentioned above are proved to be effective when dealing

with the illumination change and pose variation, they are

less effective in handling partial occlusions as a result of the

adopted holistic appearance model. In order to overcome

the demerit mentioned in global-descriptor based appearance

models, many trackers [7, 8] adopt local descriptor-based

appearance models due to their incorporation of the spatial

information with the appearance models. However, most of

them do not make use of the correlation between local parts,

which is a very important statistics information of the object

in tracking. Recently, [9] uses a correlation-based observa-

tion model with canonical correlation analysis (CCA) as the

appearance model, which is robust in handling occlusion and

illumination variation. Inspired by [9], our P3CA tracker

also utilizes the correlation-based appearance model, but in

contrast to [9], we incorporate principal component analysis

(PCA) into the calculation of the CCA subspace in order to

solve the Small Sample Size (3S) problem and reduce the

computation cost. Moreover, considering the disadvantage of

static appearance models used in many previous trackers, we

propose a novel incremental updating method for our P3CA

tracker to handle the appearance variations.

The reminder of the paper is organized as follows. Section

2 shortly introduces the whole tracking system. In Section

3, we propose our P3CA with the basic theory of CCA and

PCA. P3CA-based appearance model is introduced in Sec-

tion 4. In Section 5, we introduce our incrementally updating

method for P3CA. We present our tracking results with a de-

tailed analysis in Section 6. Finally, our work concludes with

Section 7.

2. SYSTEM OVERVIEW

In our tracker, we use a rectangle to represent the target and

define the object state at time t as St = (dxt, dyt, sct, θt, srt, δt),
where dxt, dyt, sct, θt, srt and δt represent the translation in

horizontal and vertical axis, scale, rotation angle, aspect ratio,

and skew direction respectively. We construct our tracker in

the framework of Particle Filter (PF), which is commonly
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used in many trackers[10, 5, 6] due to its excellent character-

istics.

For the dynamic model in PF, we assume a commonly

used Gaussian random walk model:

p(St|St−1) = N (St;St−1,Ψ) (1)

where Ψ is a diagonal covariance matrix which is composed

of the standard deviations of each variable in the state vector

St.

For the appearance model in PF, we use our proposed

P3CA appearance model, which is a combination of PCA and

CCA. CCA is an effective method for analyzing the statisti-

cal correlation between two variables. Intuitively, using the

statistical correlation relationship between the pairs of sub-

patches for evaluation of the candidate objects tends to be

more robust than using the holistic information, because with

real environment changes (e.g. illumination variations or oc-

clusions) the sub-patches will only be influenced by the iden-

tical and random environment noises. Possible split of a given

image patch is shown in Fig. 1(a). In this paper, we adopt the

vertical split. However, the calculation of the CCA subspaces

in the area of pattern recognition always suffers from the 3S

problem [11]. Thus, PCA is incorporated in our P3CA ap-

pearance model, which successfully solves the 3S problem

and dramatically reduces the computation cost in the genera-

tion of the CCA subspace. Moreover, to account for the ap-

pearance variations, we propose an online updating algorithm

for P3CA. The whole tracking system is shown in Fig. 1(b).
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Fig. 1: (a)Possible split of a given image patch (b)System

overview

3. P3CA: A COMPACT ASSOCIATION OF PCA AND

CCA

The canonical correlation analysis (CCA) is an effective sta-

tistical method, which can convert the correlation between the

two sets of random variables to the correlation between a few

pairs of independent variables. Considering two random vec-

tors with zero mean x ∈ R
dx and y ∈ R

dy , CCA aims in

finding a pair of project-vectors ux ∈ R
dx and uy ∈ R

dy

such that Corr(x∗

1,y
∗

1) is maximized, where x∗

1 = uT
xx and

y∗

1 = uT
y y. Generally, the project-vectors ux and uy in CCA

subspace can be obtained by (2):

max uT
xΣxyuy s.t. uT

xΣxxux = uT
y Σyyuy = 1 (2)

where Σxy represents the inter-class covariance matrix and

Σxx, Σyy represent the intra-class covariance matrices.

Using the Lagrangian multipliers, the optimal project-

vectors in (2) are the eigenvectors corresponding to the largest

eigenvalues of the following generalized eigensystems:

ΣxyΣ
−1
yy Σyxux = λxΣxxux

ΣyxΣ
−1
xxΣxyuy = λyΣyyuy (3)

Naively, assuming that all covariance matrices are invert-

ible, by calculating the q largest eigenvalues and the corre-

sponding eigenvectors of (3), one can easily obtain the current

CCA subspace. However, the assumption mentioned above

always cannot be satisfied in object tracking due to the obser-

vations being high-dimensional, whereas the number of sam-

ples always being small size, which will lead to 3S problem.

To obtain the inverse covariance matrices while keeping

all valid information, Sun et al. [11] propose to incorporate

PCA, which is widely used in many applications[12, 13, 14],

into the calculation of CCA for feature extraction[15]. By us-

ing PCA, one can analyze the canonical correlation in low di-

mensional space where the covariance matrices always being

invertible, which would dramatically reduce the computation

cost. Moreover, the authors also give a detailed proof to prove

that calculating the CCA subspace in the low-dimensional

space would not lose any valid information [11].

Inspired by the above method, we combine PCA and

CCA in our P3CA tracker to solve the 3S problem and re-

duce the computation cost in object tracking. The initial

P3CA subspace(P,Ux,Uy) can be obtained by calculat-

ing CCA on low-dimensional data which is gained by pro-

jecting observations to the initial PCA subspaces, where

P = diag([ρ1, ρ2, ..., ρq]) is a diagonal matrix whose el-

ements are the q largest canonical correlation scores. And

Ux = [ux1,ux2, ..., uxq], Uy = [uy1uy2, ...,uyq] represent

the projection matrices with columns as the project-vectors.

Since the combination of PCA and CCA in [11] is used

to extract image features, it cannot be used in object tracking

directly. Therefore, after obtaining the initial P3CA subspace,

the next two important issues are how to use P3CA in object

tracking and how to update it, which we will discussed in the

next two parts.

4. P3CA-BASED APPEARANCE MODEL

Our appearance model in the framework of PF is the P3CA

subspace (P,Ux,Uy). And the log-likelihood of particle i at

time t can be obtained by (4):

log(p(Zi′′

t |St)) = −1

2
(x̄i′′

t ȳi′′

t )Γ−1(x̄i′′

t ȳi′′

t )T (4)
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where x̄i′′

t = xi′′

t −mx, ȳi′′

t = yi′′

t −my represent the cen-

tered observation data in low dimensional space obtained by

projecting the original data into the current PCA subspaces

and mx, my represent the mean vectors of the low dimen-

sional data.

Γ =

(

Σxx ΣxxUxPUT
y Σyy

ΣyyUyPUT
xΣxx Σyy

)

(5)

5. ONLINE UPDATING OF P3CA

There are many methods for subspace online learning and up-

dating. In this paper, we employ the Sequential Karhunen–

Loeve algorithm(SKL) [16, 5] to incrementally update the

PCA subspaces corresponding to the left sub-patch and the

right sub-patch. And we denote the current PCA subspaces

by (Upcax, Σpcax) and (Upcay,Σpcay).
After obtained the current PCA subspaces, the last re-

maining issue is how to effectively update the P3CA subspace

(P,Ux,Uy) using CCA on current PCA subspaces. Since

the updating of the right sub-patch y is similar as the left sub-

patch x and can be done by simply interchanging x with y, in

the following, we will only discuss the P3CA updating for the

left sub-patch. In Section 3, we know that P3CA subspace can

be obtained by solving (3) on low-dimensional space, which

can be written in matrix form as (6):

AUx = UxP where, A = Σ−1
xxΣxyΣ

−1
yy Σyx (6)

From (6), we know that, for updating P3CA subspace,

the main task is to update the current covariance matrices

to the new ones, when the new observations are available.

Suppose that the current mean vectors and covariance ma-

trices are denoted by mx, my , Σxy , Σ−1
xx , Σ−1

yy . When

the new observations Z1 = {(xt+1,yt+1), (xt+2,yt+2), ...,
(xt+m,yt+m)} come in (empirically, we choose m = 5 ), the

new covariance matrices, Σnew
xy , (Σ−1

xx )
new and (Σ−1

yy )
new,

corresponding to the entire dataset, Z = {(x1,y1), (x2, y2),
..., (xt+m,yt+m)} can be obtained as follows:

Step 1: Get the updated PCA subspaces (U
′

pcax, Σ
′

pcax)

and (U
′

pcay,Σ
′

pcay) using SKL algorithm.

Step 2: Project the current mean vectors and covariance

matrices obtained from the old PCA subspaces to the updated

PCA subspaces, denote them by m
′

x, m
′

y , Σ
′

xx, Σ
′

yy , Σ
′

xy .

Step 3: Project the new observation data Z1 to the updated

PCA subspaces and get corresponding mean vectors and the

covariance matrices: m
′′

x , m
′′

y , Σ
′′

xy , Σ
′′

xx, Σ
′′

yy .

Step 4: Use the mean vectors and covariance matrices

gained from Step 2 and Step 3 to compute the new covariance

matrices corresponding to the entire dataset as Eqs.(7)-(9):

Σnew
xy =

t

t+m
Σ

′

xy +
m

t+m
Σ

′′

xy

+
tm

(t+m)2
(m

′

x −m
′′

x)(m
′

y −m
′′

y )
T (7)

(Σ−1
xx )

new = D−1
x − ããT

α
, (Σ−1

yy )
new = D−1

y − b̃b̃T

β
(8)

where,

Dx =
t

t+m
Σ

′

xx +
m

t+m
Σ

′′

xx,

Dy =
t

t+m
Σ

′

yy +
m

t+m
Σ

′′

yy,

α = 1 + aT ã, β = 1 + bT b̃,

a =

√
mt

t+m
(m

′

x −m
′′

x), b =

√
mt

t+m
(m

′

y −m
′′

y ),

ã = D−1
x a, b̃ = D−1

y b (9)

After we get the updated covariance matrices, we can ob-

tain the updated P3CA subspace using (6).

6. EXPERIMENT RESULTS

In this section, we validate our proposed algorithm on four

challenging video sequences and compare it with five state-

of-the-art methods proposed in recent years. All of these se-

quences, Car11[5], Occ2[17], Dollar[17], Girl[17] are pub-

licly available benchmark video sequences and can be down-

load from their corresponding project homepage. The chal-

lenges of these sequences include severe occlusions and dras-

tic variations of illumination, pose and scale. In order to test

the effectiveness and robustness of our proposed tracker, we

compare it with FragT[8], MILT[17], L1T[6], IVT[5] and

CCA[9], where IVT and CCA respectively use one compo-

nent of our P3CA tracker. The number of particles is set to

600 for all particle filter-based methods and we empirically

choose the PCA subspace dimension 8 and CCA subspace di-

mension 8 in our P3CA tracker and trackers using PCA or

CCA alone. For fair comparison, we use the source code pro-

vided by the authors and assume that the initial bounding box

of the target object for all methods is same and is specified

manually beforehand.

Comparative tracking results for selected frames are

shown in Fig. 2, from which we can see that our P3CA tracker

performs very well on all these challenging sequences. The

CCA tracker implemented by ourselves, which also adopts

the correlation-based appearance model, solves the 3S prob-

lem by adding a random disturbance to the covariance matrix

to make it invertible [18], which will lose accuracy due to ap-

proximation. Thus, CCA tracker achieves the second place on

average performance over all sequences. IVT performs well

in dealing with variations of illumination in Car11 shown

in Fig. 2(a), but it is less effective in handling heavy occlu-

sion for adopting holistic appearance model as in sequences

of Occ2, Girl and Dollar shown in Fig. 2(b), Fig. 2(c) and

Fig. 2(d). FragT performs well in handling occlusion caused

by dissimilar object because it is specifically designed to

handle occlusions via part-based model. But, it is not very ef-

fective when there exists occlusions caused by similar object
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and appearance variations caused by wearing a hat as in se-

quences of Dollar and Occ2 shown in Fig. 2(d) and Fig. 2(b).

Moreover, tracking results on Car11 demonstrate that FragT

is unable to handle severe variation of illumination. L1T is a

template-based method using sparse representation, which is

robust to partial occlusion and illumination variation. But it

is less effective when the scenario is very complex as shown

in Fig. 2(a), Fig. 2(b) and Fig. 2(d). MILT models the object

appearance using online Multiple Instance Learning method

and it can handle occlusion, illumination change and pose

change. But it cannot achieve very accurate tracking results

when there exists rotation and scale change for lacking the

representation of rotation angle and scale in the object state.

Moreover, tracking results on Girl sequence demonstrates

that MILT cannot handle the long duration and severe occlu-

sion caused by object with similar appearance.

( )a

( )b

( )c

( )d

Fig. 2: Comparison tracking results of P3CA tracker (blue

solid box) with the CCA tracker (cyan dashed box), the IVT

tracker (yellow dashed box), the Fragment-based tracker

(magenta dashed box), the MIL tracker (red dashed box),

and the ℓ1 tracker (green dashed box) on four video

sequences. (a)Car11 (b)Occ2 (c)Girl (d)Dollar

We also measured the quantitative tracking error, the Eu-

clidean distance from the tracking center to the ground-truth

(labeled by ourselves), to evaluate the robustness of a method.

The center error plots of these 6 methods on 4 representa-

tive sequences are shown in Fig. 3, which demonstrate that

our tracker is very robust in handling occlusions, illumination

changes, pose and scale changes even in very complex sce-

nario. Moreover, we show the average center errors in Table

1, which shows that our tracker gives the best tracking results

on 3 sequences and the second place on the other sequence.

(a) (b)

(c) (d)

Fig. 3: Center error plots.

Table 1: Location error(in pixel, the bold font indicate the

best performance)

seq P3CA CCA IVT FragT MILT L1T

Car11 2.2 2.8 1.9 32.7 7.5 26.9

Occ2 7.7 9.4 10.0 14.1 10.8 22.5

Girl 2.9 3.2 10.0 2.9 28.5 4.4

Dollar 7.2 9.1 14.5 39.5 22.0 75.8

Running on a standard 3.4GHz machine, our P3CA

tracker costs 79.7ms per frame on average. Although it is

not as effective as IVT (40.3ms) and MILT (73.8ms), it is

much faster than the other three methods, which are: CCA

(139.8ms), FragT (267.5ms), L1T (5322.5ms).

7. CONCLUSION

In this paper, we have presented a novel correlation-based

online tracker called P3CA, which takes full advantages of

PCA and CCA and avoids their demerits at the same time. In

contrast to methods based-on holistic information, our tracker

is more robust in handling occlusion for using the canonical

correlation score to evaluate the target goodness. Moreover,

unlike the previous correlation-based approaches, our P3CA

tracker adopts PCA into the generation and updating of CCA,

which can enable the tracker to escape from 3S problem and

reduce the computation cost at the same time. In addition,

we proposed an incrementally learning method to update our

P3CA appearance model online, leading our tracker to be ro-

bust to various appearance variations. Qualitative and quanti-

tative experiment results on different challenging sequences

demonstrate that our tracker is very robust to the environ-

ments with partial occlusion and various appearance varia-

tions.
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