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ABSTRACT

We propose a method for detecting group interactions for groups of
varying number of objects. We model each object as a moving agent
with a direction-aware interest map and group interactions as mutual
interests between objects. After grouping objects into unit interac-
tions individually in each frame, we solve the temporal association
problem by tracking group interaction over consecutive frames. Op-
timal grouping is obtained by finding the maximum weight spanning
tree of a directed graph formed by objects and their potential inter-
actions. Experimental results show that our method obtained around
80% recalling rates on two publicly available datasets.

Index Terms— Trajectory Analysis, Group Interaction, Hot-
spot Detection

1. INTRODUCTION

In surveillance and team-sports analysis, it is usually difficult to
specify for interacting objects the set of target behaviors or the num-
ber of involved objects. We aim to locate hot-spot events without
estimating their types. Assuming that all objects intend to keep their
individual moving status as long as possible [1], we use group inter-
actions as clues to locate events both temporally and spatially from
trajectory data. In this paper we propose a detection method of group
interactions. One key issue in reliable detection arises from the sub-
jectiveness in interaction definition. We handle this difficulty from
both the definition and the evaluation methods.

Our target interaction is temporally-continuous spatial proxim-
ity of objects: we define them as containing at least two objects at
any time; being temporally continuous; and they terminate when the
configuration of dominant significance has been largely changed. An
object only belongs to one group interaction at any moment, and
might belong to different interactions in different periods. The ter-
mination condition helps to solve the ambiguity in the boundary of
group actions, where the dominance of a member object is defined
as the overall interests it received from all neighbouring objects.

Besides the above consideration, there are three main contribu-
tions in our method: we define a motion-direction-aware interest
map for modelling the mutual influence between interacting objects;
we model the isolation of unit interactions in each frame as an un-
supervised clustering problem, and solve it as a rooted arborescence
problem; we interpret the temporal association of group interactions
as a tracking task of interactions.

After a brief review of prior works on automatic analysis of
group interactions in Section 2, we describe our detection method
of group interactions in Section 3. In Section 4, we evaluate the per-
formance of the proposed approach on two standard datasets, and
then conclude the paper in Section 5.

∗This work is supported by the Japanese MEXT Grant-in-Aid for Young
Scientists (B) No.23700110.

2. PRIOR WORKS

We roughly classify previous methods on group behaviors into two
categories: methods with or without a pre-specified set of behaviors.

Methods dealing with a pre-specified set of target group behav-
iors and well-defined scenarios (e.g. detection of face-to-face con-
versations in a meeting [2] and detection of bag stealing or unat-
tended luggage in video surveillance [3]) use prior knowledge about
the scene and detection is performed based on multi-modal inputs,
e.g. speech, facial expressions, pose and gaze [4]. With the prior
knowledge of target behaviors, it is possible to define the intermedi-
ate status of interactions where HMM is applicable to find the opti-
mal solution [5]. Some works also applied constraints to the number
of involved objects, e.g. four individuals [5] or two people [3].

Methods without a pre-specified set of behaviors rely on de-
tected interactions to understand behaviors of humans (e.g. users of
mobile devices [6]) or animals (e.g. baboons [7]). Without enough
prior knowledge on the target interactions, the grouping of interact-
ing objects is usually performed in a much simpler way, for example
by grouping objects that remain within a specified distance for at
least a minimum duration of time [6][8]. In some constrained sce-
narios, including both spatial constraints (e.g., traffic roads) or tem-
poral constraints (e.g., periodic pattern), clustering techniques could
help to model and classify interactive patterns. In less constrained
scenarios, more attention is given to several basic motion patterns
(e.g. track, encountering, flock) [9].

There are also methods that do not explicitly detect interactions,
but incorporate them for improving the performance of certain video
analysis, e.g. video tracking [10][11].

Isotropic influence potential function (i.e., it has the same in-
tensity regardless of its direction) tend to include irrelevant objects
[10][12]. Visual focus of attention (VFOA) intends to indicate the
direction a person is looking at [13]. The head direction is not only
difficult to estimate, but could also be inconsistent with the real in-
terested direction. A behavioral force model can describe social in-
fluences that an object received from other attractive or repulsive
objects during pedestrian movements [1]. This social model was
used, usually in a simplified form, for analyzing existed interaction
data, e.g. the one with only the attractive force for modelling the
desires of objects in mutual approaching [12], and the one with only
the repulsive force for solving collisions during multi-target track-
ing [14]. However, most complex group interactions, such as many
self-organized group behaviors, are only explainable by considering
both attractive and repulsive forces [1]. We thus need to consider
both forces for a better model of group interactions.

3. ONLINE TRACKING OF UNIT INTERACTIONS
3.1. Problem Formulation
Given L trajectories collected from NF sampled frames, we denote
the lth trajectory at the ith frame by oli = {ali,xli,vli}. ali is for
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the availability of a trajectory, which takes 1 when it appears in the
present frame and takes 0 otherwise. xli is its spatial position. Its
velocity vli is computed from a local ∆L-frame long history,

vli =
1

∆L

i−∆L∑

j=i−1

xli − xlj

ti − tj
(1)

where ti is the time stamp of the ith frame. sli ≥ 0 is the label of
its interaction, where sli = 0 if it joins no interaction. At the ith

frame, we group all moving objects as Gi = {oli|ali = 1}, and
their interactive status as si = {sli|ali = 1}. We infer the hidden
interactive status from observation {Gi} by

{s∗i } = argmax
{si}

logP ({si}|{Gi})

= argmax
{si}

logP ({Gi}|{si})P ({si}). (2)

We formulate it as a tracking problem under 1st order dependency,

s
∗
i = argmax

si

logP (Gi|si,Gi−1)P (si|s
∗
i−1) (3)

and solve it in three steps: frame-wise grouping of objects into unit
interactions;

s
U
i = argmax

si

logP (Gi|si,Gi−1) (4)

temporal association of interactions between frames;

s
∗
i = argmax

si

logP (si|s
∗
i−1, {s

U
i }) (5)

and a post-smoothing process.

3.2. Frame-wise Grouping of Unit Interactions
We analyse group interactions by evaluating the intention of each ob-
ject interacting with other objects. The interaction is modelled as a
behavior of multiple objects motivated by unidirectional/mutual in-
terests. Assuming that the movement of each object is mainly driven
by his desire in interacting with one other object, we derive

P (Gi|si,Gi−1) ≈
∏

l

P (oli|oPli
, si,Gi−1) ∝ exp(

∑

l

Ili,Pli
) (6)

Pli denotes its target object. For objects having no high interests on
other objects, we simply let it focus on a virtual object oV R with
fixed interest IThr.

Ili,Pli
=

{
Ili(xPli

) oPli
∈ Gi

IThr oPli
= o

V R (7)

We infer the target object that an object intends to interact with by

{PU
li } = argmax

{Pli}

∑

l

Ili,Pli
(8)

We hence intend to find the spanning tree with the maximum inter-
ests for the directed graph built from all these objects. We build a
directed graph, where each object is a node (Fig.1). For any two
objects oli,omi ∈ Gi, we add one link from oli to omi with weight
Ili(xmi), and one link from omi to oli with weight Imi(xli).
We add an extra root node, which receives upward links from all
objects with IThr. This rooted maximum spanning tree problem
is also called rooted arborescence, where Chu-Liu/Edmonds’ al-
gorithm (Complexity O(E + V logV )) [15][16] is applied to find

Virtual Root Node

Frame i

2

1

3
4

5
6

1          2          3       4       5       6
1       0 .00,    0.12     0 .04    0 .11    0 .43   0 .62    
2       0 .32     0 .00     0 .00    0 .05    0 .73   0 .50 
3       0 .04     0 .00     0 .00    0 .75    0 .00   0 .01
4       0 .14     0 .04     0 .56    0 .00    0 .04   0 .50
5       0 .48     0 .60     0 .00    0 .02    0 .00   1 .38 
6       0 .59     0 .32     0 .00    0 .03    1 .13   0 .00
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Fig. 1. Framewise detection of unit interactions by grouping objects.

the arborescence solution. Each unit interaction is then detected by
computing the cluster of trajectories that are derived from the same
path to the root node, among which clusters with only one object are
discarded.

s
U
li =

{
sUPli

oPli
∈ Gi

New-Id oPli
= o

V R (9)

An advantage of the rooted arborescence-based clustering is that it
is fully unsupervised without the need to know the cluster number.

Observations on pedestrian behaviors include [1]: (i) pedestri-
ans prefer to keep an individual desired speed in the sense of least
energy-consuming; (ii) go straight ahead; (iii) have a private sphere
(territorial effect) to avoid collisions, (iv) need more space in the
walking direction than other directions; (v) show attractive effects,
with a longer range of interactions than repulsive effects; and (vi)
both attractive and repulsive forces are velocity-dependent.

We design the distribution map of the interests based on their
positional relations and the current velocities (Fig.2(a)). In Fig.2(b),
we show how typical two-object interactions are interpreted by the
above interests. The interest of a moving object oli in interacting
with an object at a position x is defined as

Ili(x) = IM
li (x) + IS

li(x) (10)

with the main interest IM
li (x) and the side interest IS

li(x). The inter-
est received from the main interest field is defined as

IM
li (x) = αli(x) exp

[
−
|x− xli|

2

2(σv
li)

2
−
1− |Cli(x)|

2σθ
li

]
(11)

where Cli(x) ≡ cos(x− xli,vli), σv
li controls the spreading of the

interests in the radius direction (Interest Effective Range), and σθ
li

controls the distribution of interest in the angular direction,

σ
θ
li = log

[
1 +

v̂

|vli|+ ǫ

]
. (12)

v̂ is the average speed computed from all the trajectories, and ǫ

is a very small value to prevent the division by zero. We assume
that moving objects focus more in their positive moving directions,
which is controlled by an extra weight αli(x), i.e.,

αli(x) =

{
1, Cli(x) ≥ 0
β + (1− β) ∗ tanh( v̂

|vli|+ǫ
), Cli(x) < 0

(13)

αli(x) approaches 1 when the speed vli is approaching zero, and
decays to β when the speed vli goes to infinity. As for the side
interest, we model it as only interested in very close objects, but less
sensitive in the angular direction,

IS
li(x) = exp

[
−
|x − xli|

2

2(wvσv
li)

2
−

|Cli(x)|

2wθσθ
li

]
(14)

where wv and wθ are two additional weights.
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Fig. 2. An interaction is modelled as a mutual interest between ob-
ject trajectories, where each object has main interests and side inter-
ests. (a) Interest map under different speed; (b) Unit interactions in
terms of interest map.

3.3. Inter-frame Association of Unit Interactions

Defining Iik = {l|sUli = k, k > 0}, we build two vectors with equal
length of |Iik ∪ I

jk
′ | from two unit interactions Iik and I

jk
′ , i.e.,

−→
A ik = {Aik(oli)|l ∈ Iik ∪ I

jk
′ } and

−→
A

jk
′ = {A

jk
′ (olj)|l ∈

Iik ∪ I
jk

′ }.Aik(oli) is the accumulated interests that object oli re-
ceived from other objects in the interaction Iik,

Aik(oli) =

{ ∑
m∈Iik\{l}

Imj(xli) l ∈ Iik

0 otherwise
(15)

The distance between Iik and I
jk

′ is defined as

D(Iik, Ijk′ ) = 1−
cos(

−→
A ik,

−→
A

jk
′ )min(|

−→
A ik|, |

−→
A

jk
′ |)

max(|
−→
A ik|, |

−→
A

jk
′ |)

(16)

to reflect the interest shift between these two unit-interactions. For
example, when a configuration [1, 1, 0] shifts to [1, 0, 1] or [1, 0, 0],
both cases result at a distance of 0.5, which means that half of the
elements have changed in the interaction.

The current interaction is regarded to continue unless most ob-
jects in this interaction have shifted their major interests. We thus
associate unit interactions in consecutive frames by using Eq.5 with

P (si|s
∗
i−1, {s

U
i })

∝ exp

[
−
∑

lm

δ
sU
li

,k
δ
sU
mi−1

,k
′

|Iik||I
i−1,k

′ |
D(Iik, Ii−1,k

′ )δsli,s∗mi−1

]
(17)

subject to ∀l 6= m,sli = smi ⇐⇒ sUli = sUmi. δa,b is the Kro-
necker delta. This is solvable by bipartite graph mapping. A post-
thresholding is then performed on two associated unit interactions
∀l,m, l ∈ Iik,m ∈ I

i−1,k
′ , sli = s∗mi−1,

s
∗
li =

{
s∗mi−1 D(Iik, Ii−1,k

′ ) < ThrConn

New-Id otherwise
(18)

3.4. Post-processing of Noisy Objects

When a time lag is allowed, we can include a post-smoothing step
that removes those noisy objects before the above post-thresholding:

1: Filter out objects that last less than TThr
1 frames;

∃i1, i2,
∏i2−1

i=i1
δsli,sl,i+1

=1, δsl,i1−1,sli1
=δsli2 ,sl,i2+1

=0

0 ≤ i2 − i1 < TThr
1 → sli = 0, i1 ≤ i ≤ i2.

2: Define the dominance of object oli in interaction I as

WI(oli) =

∑
Iik∈I

Aik(oli)∑
l

∑
Iik∈I

Aik(oli)
(19)

and remove the object if it satisfies WI(oli) < 10%;
3: Discard short interaction I, if

∑
Iik∈I

1 < 20 frames;

We then perform the post-thresholding with ThrConn = 0.5 for
a finer division over the resultant sequence.

4. EXPERIMENTAL RESULTS

We use two datasets of trajectories to validate the proposed inter-
action detection method: the JAIST dataset [17] and the APIDIS
basketball dataset [18]. We use ground-truth trajectories and inter-
actions, so as to focus on the accuracy evaluation of interaction de-
tection. In order to suppress the subjectiveness in manual annota-
tions, we only label interactions with very clear semantic meanings.
The annotated events in JAIST DB are listed in Table 1. Events in the
APIDIS DB are related to clear activities, including offence-defence,
tip-off, and player exchange. We only label as ground-truth events
with unambiguous semantic meaning and, for each event, we only
label the minimum set of unarguable member objects (e.g. gawkers
were not labeled in a fighting event). Finally, in our evaluation cri-
teria, we define the overload rate of objects and interactions. A cor-
rectly detected group interaction must include all key objects in the
minimum set. Inclusion of borderline objects and over-segmentation
of events are evaluated by the overload rate of objects and interac-
tions, respectively. We provide limited results here, and invite read-
ers to visit the supplemental material [19] for more results.

Table 1. Interactions for the JAIST Database. FI:Fight, FD:Fall-
down, SS:Steal-Suitcase, DS: Drag-Suitcase, EB: Exchange-Bag,
SC: Stop-and-Chat, PW:Pickup-Wallet. (The recalling rate is com-
puted at the optimal affective range 1075mm obtained in Fig.3.)

Event Type FI FD SS DS EB SC PW Total

Times 4 3 9 17 9 6 3 51
Recalled 4 3 6 16 5 5 1 40

We considered three criteria for performance evaluation. For
interaction I, we define O(I|F) = {l|∃Iik ∈ I, i ∈ F , l ∈ Iik} as
the set of its objects within the set of frames F . Given NGT ground-
truth and NDET detected interactions, we define the match function
between the p-th ground-truth interaction to the q-th detected one,

MGT
pq =






1, O(IGT
p |Fpq) ⊂ O(Iq |Fpq) and

|O(Iq |Fpq)| − |O(IGT
p |Fpq)| <= Eobj

0, otherwise

In their overlapped period, the interaction should include all objects
in the ground-truth interaction and no more than Eobj other objects.
The positive recall rate is defined as

RPR =

∑
p
sgn(

∑
q
MGT

pq )

NGT
, (20)

where sgn(Q) = 1 if Q > 0 and 0, otherwise. The spatial com-
pleteness of detected group interactions is evaluated by the overload
rate of objects,

ROLOBJ =

∑
pq |O(Iq |Fpq)|M

GT
pq∑

pq
|O(IGT

p |Fpq)|MGT
pq

, (21)
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Fig. 3. Performance evaluation of the proposed interaction detection
method. (a) Positive Recall Rate of Ground-truth Interactions;(b)
Overload Rate of Objects per GT Interaction;(c) Overload Rate of
Interactions per GT Interaction.

while the temporal completeness is evaluated by the over-segmentation
rate of the ground-truth interactions,

ROL =

∑
p

∑
q
MGT

pq∑
p sgn(

∑
q M

GT
pq )

. (22)

Figure 3 shows the value of the three metrics with respect to var-
ious interest ranges σv

li under three different error tolerance thresh-
olds Eobj(i.e.,0,1,2), where β = 0.7, wv = 0.4 and wθ = 2. Com-
paring our method to an isotropic interest map used in [10], we ob-
served that it not only obtains a higher recalling accuracy of anno-
tated interactions, but also has a lower overload rate of both objects
and interactions. The optimal values of σv

li are around 1.1m for
the indoor dataset, and 1.8m for the basketball dataset, respectively.
These values are physically meaningful and close to our expectation.
As an overall evaluation, if we tolerate one extra redundant object,
we obtain around 80% recalling accuracy in both datasets.

We also make experiments to investigate the robustness of the
proposed method against tracking errors. There are mainly four
types of tracking errors: inaccurate localization, missing detections,
false alarms and id-switches. We simulate the first two kinds of
tracking errors on our ground-truth trajectories, i.e., inaccurate lo-
calization by introducing Gaussian noises and missing detections by
randomly removing objects at each frame. The overload rate of ob-
jects remains quite stable in both cases, as shown in Fig. 4(a), where
inaccurate localization and missing detections mainly decrease the
recall rate and over-segment interactions. The proposed method out-
puts robust detection results with a low over-segmentation rate of

0.00 0.02 0.04 0.06 0.08 0.10
1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 200 400 600 800 1000
1.0

1.1

1.2

1.3

1.4

1.5

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000
1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.02 0.04 0.06 0.08 0.10
1.0

1.1

1.2

1.3

1.4

1.5

Probability of 
Random Object Removal

JAIST Dataset

O
ve

rlo
ad

 R
at

e 
of

 O
bj

ec
ts

 P
er

 G
T 

In
te

ra
ct

io
n

Standard Deviation 
of Localization Noise (mm)

JAIST Dataset

Standard Deviation 
of Localization Noise (mm)

 

P
os

iti
ve

 A
cc

ur
ac

y 
of

 G
ro

un
d-

Tr
ut

h 
R

ec
al

l

JAIST Dataset

O
ve

rlo
ad

 In
te

ra
ct

io
ns

 P
er

 G
T 

In
te

ra
ct

io
n

Standard Deviation 
of Localization Noise (mm)

JAIST Dataset

 

 

Probability of 
Random Object Removal

JAIST Dataset

Probability of 
Random Object Removal

JAIST Dataset

(a)

0.00 0.02 0.04 0.06 0.08 0.10
1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 200 400 600 800 1000
1.0

1.1

1.2

1.3

1.4

1.5

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000
1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.02 0.04 0.06 0.08 0.10
1.0

1.1

1.2

1.3

1.4

1.5

Probability of 
Random Object Removal

JAIST Dataset

O
ve

rlo
ad

 R
at

e 
of

 O
bj

ec
ts

 P
er

 G
T 

In
te

ra
ct

io
n

Standard Deviation 
of Localization Noise (mm)

JAIST Dataset

Standard Deviation 
of Localization Noise (mm)

 

P
os

iti
ve

 A
cc

ur
ac

y 
of

 G
ro

un
d-

Tr
ut

h 
R

ec
al

l

JAIST Dataset

O
ve

rlo
ad

 In
te

ra
ct

io
ns

 P
er

 G
T 

In
te

ra
ct

io
n

Standard Deviation 
of Localization Noise (mm)

JAIST Dataset

 

 

Probability of 
Random Object Removal

JAIST Dataset

Probability of 
Random Object Removal

JAIST Dataset

(b)

Fig. 4. Evaluation on the robustness of the proposed interaction de-
tection method against simulated tracking noises, under two different
pre-smoothing strengths. (a) Results with pre-smoothing (21-frame
temporal window); (b) Results with pre-smoothing (41-frame tem-
poral window). Both take the affective range as 1075mm.

events (as below 1.5 here), when the standard deviation of Gaussian
noise is lower than 400mm, which is achievable in most conventional
tracking methods (e.g.[20]). The recall precision remain high when
the probability of random object removal is smaller than 0.02, while
the over-segmentation rate of events reaches 3.5. They can be par-
tially corrected by pre-smoothing of trajectories and post-removal of
boundary objects. Our manual data are also smoothed from tempo-
rally down-sampled labeling. In Fig. 4(b), we enlarged the temporal
window for pre-smoothing the trajectories, which clearly alleviates
over-segmentation of events. Note that interpolation of missing ob-
jects was not performed in our pre-smoothing process, because it is
less practical in the real application. False alarms and id-switching
increase overload rate of objects by including non-existing or dupli-
cated objects, which are more difficult to simulate. False-alarms usu-
ally result at short-term trajectories, most of which could be easily
pre-filtered out. Id-switching is more complicated, whose solution
requires extra observation data in general.

5. CONCLUSIONS

We described a method to detect group interactions from trajectory
data without pre-specified sets of group behaviors, based on asso-
ciating unit interactions. Experimental results show that the pro-
posed method can extract group interactions with a variable number
of group members. The method was validated on two publicly avail-
able datasets.

As future work, we will consider to solve the detection as a uni-
fied optimization task. We are also interested in semantic under-
standing of detected group interactions, such as recognizing certain
events or detecting abnormalities.

—————————-
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