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ABSTRACT

Energy consumption has become a leading design constraint for

computing devices in order to defray electric bills for individuals

and businesses. Over the past years, digital video communication

technologies have demanded higher computing power availability

and, therefore, higher energy expenditure. In order to meet the

challenge to provide software-based video encoding solutions, we

adopted an open source software implementation of an H.264 video

encoder, the x264 encoder, and optimized its prediction stage in

the energy sense (E). Thus, besides looking for the coding options

which lead to the best coded representation in terms of rate and

distortion (RD), we constrain the process to fit within a certain

energy budget. i.e., anRDE optimization. We considered energy as

the time integration of the real demanded electric power for a given

system. We present an RDE-optimized framework which allows

for software-based real-time video compression, meeting the desired

targets of electrical consumption, hence, controlling carbon emis-

sions. We show results of energy-constrained compression wherein

one can save as much as 35% of the energy with small impact on

RD performance.

Index Terms— Green computing, video codec, H.264/AVC,

software implementation, tunable fidelity.

1. INTRODUCTION

Historically, processor manufacturers have responded to the demand

for more processing power primarily with faster processor speeds.

However, higher clock speeds imply in higher power consumption

and heat. Image and video processing are driving forces behind this

computational power pursuit. The state-of-the-art video compres-

sion standard, H.264/AVC [1]-[3], is a computation-hungry applica-

tion. Nevertheless, energy usage and carbon emissions are a major

concern today. Individuals, companies, and organizations move to-

wards energy-efficient products as energy costs have grown to be a

major factor [4]. Thus, saving energy has become a leading design

constraint for computing devices through new energy-efficient archi-

tectures and algorithms.

Built as a hybrid DPCM encoder [5], the H.264 encoder searches

for the best possible prediction of the encoding signal in order to

provide the most compact representation [6]. However, that search

is one of the most time consuming stages of a software-based video

encoder [9]. Since encoders take most of time doing predictions,

controlling the complexity of the prediction stage seems to be the

natural way to control the overall complexity. In addition, when en-

coding video sequences in a low-latency communications applica-

tions, e.g. video conferencing, the time spent compressing the signal

is an issue and real-time coding may be challenging. Traditionally,
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complexity can be considered as a measure of the effort to accom-

plish certain computation tasks and can be accounted either as the

amount of memory, or the time, or the number of operations it takes

to perform some computation [7]. We propose to evaluate energy de-

mand instead of complexity, since energy is a fundamental resource

that can be directly mapped to operational costs, and complexity es-

timation is not always a reliable indicator of energy consumption in

multi-core platforms executing multi-threaded applications [8].

There are many works aimed at reducing AVC energy consump-

tion by handling its complexity. Some explores prediction tech-

niques for reducing computations with smallRD penalties [10]-[12]

but doesn’t deal the energy expenditure directly as [13] does for its

platform by handling specific features provided by the processor un-

der test. A recent work yields a substantial H.264/AVC complexity

reduction [14], however much of the complexity scaling will not be

perceived if the framework is already implemented using faster algo-

rithms, high-performance libraries and platform dependent resources

[15],[16], which, by their turn, can be very energy demanding.

The present work suggests new strategies in the direction of sav-

ing energy in real-time computation. We present a fidelity-energy

(ΦE) optimization strategy to constrain the energy demanded by an

application in a real-time scenario; particularly for a software video

encoder, the fidelityΦ can be evaluated in terms of the rate-distortion

(RD) performance [5, 19]. Then, the optimized parameters are used

to implement an RDE-optimized real-time encoding framework.

We chose an open-source high-performance encoder, x264 [18], as

the H.264/AVC software-implementation due to its excellent encod-

ing speed and good rate distortion (RD) performance. The proposed

approach suits, for example, mobile communication systems where

energy efficiency is still a major bottleneck [17].

2. MEASURING ENERGY

Energy consumption is here measured in two ways. The computer is

connected by itself (no monitor or other peripherals) to a wattmeter

and from there to the local power supply. We can read the energy

consumption from the wattmeter on another computer at every sec-

ond, through a USB port. This is sufficient for steady state tests.

However, in order to investigate the energy consumption behavior at

very fast cycles (e.g. 30 Hz or 60 Hz video), which are compara-

ble to the voltage cycles of the energy provided by our local power

company (60 Hz), one has to resort to oscillography. For these tests

we used an Elspec G4500 BlackBox and a California Instruments

5001ix sinusoidal power supply.

Time measurements can be disturbed by the the operating sys-

tem (OS) scheduler in real-time systems. We used the Linux OS

with kernel 2.6.32-3-amd64 and 250 Hz scheduler frequency.

Considering the encoding speeds provided by our platform (a 6-

core AMD R© PhenomTM -powered PC), the measurement of a short
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time intervals used to encode a video frame can be compromised.

One way to overcome the scheduler induced variances is the group-

ing of frames in GOPs (Group of Pictures). The GOP grouping

of frames also affects the demanded power waveforms. To illus-

trate this, we monitored our test platform, while compressing high-

definition (720p 30-Hz) frames in real time, at different GOP sizes.

As the processor is faster than necessary to guarantee real-time cod-

ing, the processor can “sleep” from the time it is done compressing

a GOP until the next GOP is available for compression. The power

waveform is registered by measuring the demanded power from the

PSU’s PC. The results from oscillography are presented in Fig. 1.
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Fig. 1. Power waveforms for the encoding of 720p-video frames

recorded and compressed at 30 Hz and grouped in different GOPs

configurations: (a) 1-frame GOP; (b) 50-frame GOP. As the GOP

size is increased, the waveform tends to a binary model. In (b), we

highlight the time intervals of interest: frames are available in Ta

intervals; demanded power is high while (Tp) the encoder is fully

utilizing the processor; the processor returns to idle state reducing

the energy consumption for Ti seconds waiting for a new frame.
The waveforms show distinctive GOP grouping signatures. The

rapid processor commutation between the “idle” and the “process-

ing” are discriminated in Fig. 1(a), where the power peaks repre-

sent the moment when the processor is fully busy encoding a frame,

while the valleys represent a “sleep”. The plot in Fig. 1(a) is a zoom

of the process of compressing 24 frames. From the point of measur-

ing (the PC’s PSU), the “sleep” moments are not well determined, as

the processor does not remain in the “idle” state (power demand of

80W for our AMD R© PhenomTM processor) for a long period. This

is the result of various factors: a filtering effect of the PSU related

to the AC-DC conversion; the processor scaling due to DVFS (Dy-

namic Voltage and Frequency Scaling); and the ACPI activity over

other PC components [8]. As the GOP size is increased (Figs. 1(b)),

the waveforms approach the model of binary utilization swapping

between a full-power state and an idle state. We arbitrate to use a

50-frame GOP to conform the waveform to a binary model and also

avoid OS scheduling jitter in the time measurements required by our

framework.

3. ENERGY-AWARE OPTIMIZATION

Typical optimization tasks deal with cost functions or success mea-

sures. Let a software encoder execute its job for which we can

somehow measure its cost. For signal compression, the cost mea-

sure can be a measure of quality, like distortion (D) or the bit-

rate (R) or a combination of both. The compression is assumed

parametrized, i.e., one has the freedom to chose the values of N

parameters {Pi}i=1,...,N . Let P be the vector with all Pi. The en-

coder runs on a given set of data Z that may be different at every

instantiation. For every choice of P and Z, we can have a measure

C of the encoder cost. In essence we can have a mapping

C = f(P, Z).

Another attribute we can derive from each instantiation is the

effort taken to execute the encoding task, which can be measured as

demanded energy E = g(P, Z). It is expected that some param-

eters like number of iterations, data sizes, etc. would influence the

demanded energy while some others would not. The central idea

in this paper derives from the fact that the correlation of E and C

is differently affected by different parameters. We will use this to

find points that minimize the energy consumption. Specifically, we

would like to operate in the lower convex hull (LCH, represented in

Fig. 2 by green points), which is the set composed by instantiations

that yield the lowest energy for a given cost. Departing from a simple

explanation using a scalar cost, in video coding, the mapping is con-

veniently addressed by a multidimensional variable as C = [R,D].
Hence, C = f(P, Z).
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Fig. 2. Illustration on the set ofRDE points that compose the Pareto

front. The visible green points belong to the lower convex hull; some

points are hidden due to the viewpoint.

P and Z are mapped to R, D and E, adding the energy dimen-

sion to the usual rate-distortion optimization problem.1 We want

to find the parameters that allow us to operate on the LCH in RDE

space. In this manner, we can be assured that no configuration would

yield lower energy consumption for a given cost value. Conversely,

we can assure that, for a given energy consumption level, no other

configuration would achieve better RD performance. Figure 2 illus-

trates the LCH in RDE space.

One approach is to use training data sets. Let {Pk} be the set

of all parameter choices, ordered in some fashion. Let also Pk have

elements Pkn. If we use a representative data set Ẑ , we can span

{Pk}, computing E, R and D for each choice and identifying the

points that belong to the LCH ofE×R×D. If the n-th point belongs

to the LCH, we record Qn = [En, Rn, Dn,Pn], which contains

the optimal points for the set Ẑ , but which are also assumed good

enough for other data. The off-line training algorithm is:

1. Input a representative data set Ẑ and create an empty list Q.

1Wemeasure active power from which we can derive accumulated energy
consumption.
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2. For all k, compute Ek = g(Pk, Ẑ) and [Rk, Dk] =

f(Pk, Ẑ). If point belongs to LCH, recordQk = [Ek, Rk, Dk,Pk]
into Q.

3. Output a list Q of points in the LCH.

After finding the Nq points which belong to LCH, we sort Q

in an ascending order of energy, i.e. {Ei} in Q in non-decreasing.

When running on-line, the parameter finding algorithm is as follows.

Initially, consider a bit-rate Rr (channel constraint) and a desired

energy target Er. Then:

1. Input a list Q of points in the LCH, the energy target Er and

the rate target Rr . Create an empty list L.

2. Span Q, for k = 1, . . . , Nq . If |Rk −Rr| < ǫ insertQk into

L.

3. Count Nl, the number of itens in L. Note that the itens in L

are still in ascending order of energy and all parameters are

supposed to achieve similar bit-rate.

4. Span L, for k = 1, . . . , Nl, until Ek ≤ Er ≤ Ek+1, then

stop.

5. FindP′ as a proportional interpolation ofPk andPk+1 in L.

6. Output parameter vector P′.

Parameter set P′ is then used to compress data set Z. We used

energy targets Er constrained to a bitrate Rr, but it is trivial to re-

place it with a distortion target Dr . Of course, many parameters

do not assume continuous values and some action has to be taken

to properly assign them. For example, being that the case for the

m-th parameter, one can use the value from Pkm if Er − Ek <

Ek+1 − Er, otherwise use the value from Pk+1,m.

If a feedback control is allowed, one can monitor the system en-

ergy consumption and continuously adjust the parameters. If the en-

ergy consumption is not as predicted, it is because of discrepancies

between Z and Ẑ, so that Ẑ is not as representative as one would

assume. Such a mismatch may also depend upon the non-linear

mapping g. One solution is to start with a target Er and to peri-

odically measure the energy E(n). We then adapt the parameters in

order to control the energy expenditure (or cost). Assume that at any

given instant n,P′ is taken somewhere as an interpolation ofPj and

Pj+1. If E(n) < Er one should move P′ towards Pj+1 or even

Pj+2. Conversely, if E(n) > Er one should move in the opposite

direction, i.e. towards Pj or even Pj−1.

The control loop enjoy all the properties of trivial adaptive sys-

tems and there are many techniques to chose adaptation steps and to

deal with convergence issues.

4. THE APPROACH

In order to scale the amount of energy used to encode a partic-

ular video sequence, we choose to modify the predictions stage,

one of the most computational intensive steps when encoding dig-

ital video [9]. Our framework for energy-controlled real-time video

coding consists in controlling the amount of energy spent while en-

coding a video sequence by adjusting the encoder in such a way

that the RD penalties, compared to a full-featured case, remain as

low as possible. Here, the energy (E) is measured by integrating

on time the active power readings provided by a wattmeter attached

to the power supply unit of a 6-core AMD R© PhenomTM desktop

computer that executes the encoding tasks. We chose x264 as the

H.264/AVC software-implementation due to its encoding speed and

good RD-performance [18]. Using the methodology discussed on

Section 3, our approach extends an RD-optimization [19] strategy,

adding the E dimension (which stands for energy) to the regular 2-

D problem of optimizing a particular codec to spend the smallest

bitrate (R) necessary to represent a encoded video signal at a partic-

ular distortion (D).

Let P be the aggregation of the following computational-effort

related parameters: the number of B-frames (#B), the number of

references frames (#Refs), the motion vectors precision (MVP)

used in motion compensation, the chosen mode decision heuristic

(MD), the quantization parameter (QP) and the number of encoding

threads (#Thrds):

P = {#B,#Refs,MVP,MD,QP,#Thrds} .

The cost C is taken as the duple rate-distortion RD, where rate is

taken as bit per seconds while the distortion is evaluated as the MSE

(Mean Squared Error) between the original and the coded signal.

We opted to evaluate an empirical approximation to the energy

function E = g(P, Z) through energy measurements. So, for each

particular encoder setup, we compute the total bitrate (R), the MSE

(D) and the energy spent to encode a training sequence (E). The

RDE points are used to populate an initial search space from whose

points that lie on its lower convex hull are derived by RDE opti-

mization. After finding the setups that belong to the LCH, we build

a lookup table from the performance numbers in order to provide

optimal starting RDE points. Any intermediate demanded energy

point not found in the table can be easily achieved by interpolation

in such a way that the global demanded energy is very close to the

energy “budget”.

5. RESULTS

At every sequence that is compressed we obtain an RDE triplet.

In order to display results in 2D, we can use the RD plots as in

Fig. 3(b), one curve for each energy (power) level. It is important

to note that not all points in a curve indicate the same power con-

sumption. We simply labeled the curve by its average as shown

Fig. 3(a), which indicates the actual power consumption as the con-

troller tracks the demanded energy target for various bit-rates.

The curves in Fig. 3 are close to each other. In order to compare

them, it is convenient to analyze averaged PSNR differences between

two RD curves as described in [20]. For each sequence, each RD-

curve is compared against the best RD-performance setup, which,

in turn, has the highest averaged power expenditure. Power expen-

diture is also presented in relative numbers. The averaged results are

illustrated in Fig. 4(a) for SD video sequences. The general behav-

ior suggests that, as we reduce the available power (and energy) used

to encode a video sequence, the performance penalties increase. In

Fig. 4(b) the results are shown for 720p sequences.

The main result is an energy-controlled framework which allows

the user to choose the desired energy budget while real-time encod-

ing HD and SD2 video sequences. As expected, the RD-perfomance

tends to be penalized as the encoding speed is raised. However, the

curves are close to each other and the worst case is represented by

high-motion high-frequency (50hZ) detailed sequences (“Shields”

and “Mobcal”). For less demanding video sequences, like videocon-

ferencing 30Hz ones (“Seq15” and “Seq21”)3, the framework penal-

izes the PSNR in less than 1.3dB on average while providing up to

35% of mean power and energy savings. The SD results, besides the

increased baseline compression speed for real-time coding (60Hz),

delivered lower PSNR drops (less than 0.6dB) for similar energy

2“Soccer” is present in the training and in the evaluation steps; however,
the frames used to evaluate the encoder are from a different set from those
used to build the training sequence.

3“Seq15” and “Seq21” are scenes where there is a couple of speakers on
a table: the background is plain on “Seq15” and is detailed on “Seq21”.
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Fig. 3. Energy scaling for compressing SD sequence “City”. A range

of 10% of deviation is allowed for both bitrate and power. (a) Ac-

tual demanded power for various bit-rates and several target power

demands. (b) RD curves for real-time compression.
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Fig. 4. PSNR drop vs. mean power ratio for (a) SD and (b) 720p

video sequences. Video quality increases as we increase the power

budget. A energy ratio of 1.0W/W represents the case of best RD-

performance for real-time coding.

savings, even for very detailed video sequences. Better training sets

may also lead to better results.

6. CONCLUSIONS

We proposed a fully-compliant energy-optimized framework for a

H.264/AVC software implementation that allows for real-time cod-

ing. Rather than using all prediction tools provided by implementa-

tion, we can optimally choose a subset of them constrained by the

amount of available energy. Our tests have shown that the RD per-

formance is moderately affected by the framework, which does not

make use of frame-skipping to comply to the requested energy bud-

get while real-time encoding. Nevertheless, we provide significant

demanded energy reduction.

In addition to the fact that out framework can be readily used to

build PC-based video encoder appliances without the need of chang-

ing decoder implementation, our contribution can benefit from the

availability of powerful computers for designing PC-based appli-

ances. We plan to further work on making an encoder aware of

environmental and communications conditions, capable of adjusting

itself to meet channel, quality and energy constraints.
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