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ABSTRACT

Flicker is a common video coding artifact that occurs especially at
low and medium bit rates. In this paper we propose a temporal filter-
based method to reduce flicker. The proposed method has been de-
signed to be compliant with conventional video coding standards,
i.e., to generate a bitstream that is decodable by any standard de-
coder implementation. The aim of the proposed method is to make
the luminance changes between consecutive frames smoother on a
block-by-block basis. To this end, a selective temporal low-pass fil-
tering is proposed that smooths these luminance changes on flicker-
prone blocks. Furthermore, since the low-pass filtering can incur
in a noticeable blurring effect, an adaptive algorithm that allows for
limiting the PSNR loss -and thus the blur- has also been designed.
The proposed method has been extensively assessed on the reference
software of the H.264/AVC video coding standard and compared to
a state-of-the-art method. The experimental results show the effec-
tiveness of the proposed method and prove that its performance is
superior to that of the state-of-the-art method.

Index Terms— Flicker, temporal filtering, H.264.

1. INTRODUCTION

Flicker is a common artifact in video coding that occurs especially at
low and medium bit rates. Flicker happens as a result of the fact that
the video encoder does not consistently treat the co-located blocks of
consecutive frames, thus increasing the inter-frame difference with
respect to that of the original video. Flicker is, therefore, a tempo-
ral artifact that is perceived as a sudden change in the reconstructed
pixel values of the same area of two consecutive frames. As stated
in [1], this is a consequence of the fact that these pixel values are
coded through different coding processes. Specifically, flicker be-
comes a more serious problem when coding a periodic Intra-coded
frame (I-frame), since it comes after an Inter-coded frame (either P-
or B-frame) and the redundancy-removing methods used by the en-
coder notably change from one to another. Furthermore, this artifact
can be more clearly perceived when static areas are coded at low or
medium bit rates. In these cases, Inter frames tend to copy the pixel
values from the previous frames, creating time consistency that is
abruptly broken when an I-frame comes, since the prediction source
changes (from temporal to spatial neighbors) and flicker becomes
much more apparent.

Flicker reduction has been a relevant topic of research since
many years ago; however, a definite solution has not been found
yet. Next, we briefly summarize some previous works that have ad-
dressed this problem. In [2] the so-called Detented Quantization
method was proposed. This method aimed to reduce the discon-
tinuity in coding distortion patterns between consecutive Inter and
Intra frames by proposing a quantization scheme that produces the
Intra-coded macroblock (MB) most similar to an Inter-coded version

of the same MB. In [3] a two-pass I-frame coding method was pro-
posed. For each I-frame, the first pass involves obtaining a simplified
P-frame that serves as no-flicker reference. In the second pass, the
ficker-prone MBs are coded using this simplified P-frame as the tar-
get and a lower QP value, while the remaining MBs are coded using
the normal Intra coding. Moreover, in [3] an effective flicker metric
is proposed that will be explained later. [1] presented an Intra predic-
tion mode selection method based on a modified distortion measure.
In particular, in the flicker-prone MBs, the distortion term of the cost
function used in the Rate Distortion Optimization (RDO) process [4]
is modified by adding a flicker distortion measure. [5] described a
rate control method that focuses on quality consistency. Specifically,
exponential models are proposed that take into account the target rate
and the buffer occupancy, and maintain the distortion as constant as
possible, thus reducing the flicker effect. [6] proposed a flicker re-
duction method based on quantizing (in the frequency domain) the
predicted version of a MB, prior to obtain the residue, so that pre-
dicted MB has little effect on the reconstructed MB, thus reducing
the flicker effect. [7] dealt with various annoying effects (such as
flicker, blocking, or ringing) by means of a post-filtering process.
Specifically, the authors proposed to use a fuzzy filter that is able to
reduce the artifacts by increasing the pixel correlation, while keep-
ing the edges of the image. The method proposed in [8] is another
example of a post-filtering process. In this case, a robust statisti-
cal temporal filter (RSTF) that relies on both spatial and temporal
neighbors was proposed.

These previous works have some drawbacks that we address in
this paper. The algorithm proposed in [6] is not standard compli-
ant, what seriously limits its field of application. Flicker reduction
methods in [7] and [8] require to perform filtering processes at the
decoder side, what prevents its use when you do not have control
on the decoder and any of the available standard decoder implemen-
tation has to be used. In [1], the flicker-prone MBs are selected
based on a fixed threshold, which does not guarantee a proper gen-
eralization ability. In this paper we propose a method that aims to
overcome the above mentioned drawbacks. In particular, we suggest
to use a temporal low-pass filter that is implemented in the encoder
(thus, it is not a decoder-side post-processing technique) obtaining
a standard compliant algorithm. Furthermore, the parameters of the
filter are estimated on-the-fly, so that it is adapted to the video con-
tent avoiding generalization problems. Finally, our approach allows
controlling the PSNR drop, keeping it under an user-defined thresh-
old, to prevent the perceived visual quality from impoverishing due
to the blurring effect caused by the temporal filtering.

The rest of the paper is organized as follows. Section 2 provides
a detailed explanation of the proposed method. Section 3 describes
the experiments conducted and presents and discuss the results ob-
tained. Finally, Section 4 summarizes our conclusions.
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2. PROPOSED METHOD

This paper proposes a novel method to reduce flicker that is compli-
ant with conventional video coding standards. Given that flicker is
perceived as a temporal artifact generated by a sudden change in the
luminance values of certain blocks between two consecutive frames
(generally, a P- or B-frame followed by an I-frame), we suggest to
reduce this effect by making the temporal evolution of the luminance
smoother. In particular, we propose to make the reconstructed pixel
values of an I-frame more similar to those of the previous Inter-frame
by means of a temporal low-pass filter. Furthermore, since the low-
pass filtering could sometimes produce a perceptible blurring effect,
an algorithm has been designed to limit the PSNR loss and conse-
quently the blurring effect.

The algorithm description has been organized in three subsec-
tions: first, we describe the proposed filtering technique; second, we
explain how to make it compliant with typical video coding stan-
dards; and third, we describe the blur control algorithm.

2.1. Selective temporal motion-guided filtering

2.1.1. Filter formulation

To reduce flicker distortion, our approach aims to make consecutive
reconstructed frames more similar to each other. To this end, we use
the following temporal filtering:

f̂
′j
n,i = αf̂

j
n,i + (1 − α) f̂

j
n−1,MV , (1)

where f̂
′j
n,i is the filtered value of the j-th pixel of the i-th MB of

the n-th frame; f̂
j
n,i is the reconstructed value of the same pixel;

f̂
j
n−1,MV is the corresponding reconstructed pixel in the previous

frame (the meaning of the subindex MV is explained below); and
α is a parameter that balances the weight of the current- and the
previous-frame reconstructed pixel values. The sub-index MV has
been introduced in f̂

j
n−1,i,MV to make clear that the co-located pixel

is not always the one used to filter. The reason is that using the co-
located pixel (f̂ j

n−1,i) produces a significant blurring effect when the
pixel region undergoes any kind of motion (either camera or object
motion) from one frame to another. To solve this problem, we pro-
pose a motion-guided filter that takes the pixel in the frame n − 1
pointed by a calculated motion vector (MV ). To this purpose, a
motion estimation (ME) process should also be carried out in the I-
frames. In our experiments, we have employed 16×16-pixel blocks
for this ME process, which is only used for guiding the proposed
filtering (this MV is not sent to the decoder).

Furthermore, the proposed filter is selectively applied: not ev-
ery block is filtered, but only those for which the suggested filtering
actually reduces certain flicker metric that is described next.

2.1.2. Flicker-prone block detection

To detect flicker-prone blocks we need to define a metric that allows
us to measure flicker distortion. An accurate flicker metric was pro-
posed in [3]:
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where f
j
n,i is the original j-th pixel of the i-th MB of the n-th frame,

f̂
j
n,i is the reconstructed value of the same pixel, and f

j
n−1,i and

f̂
j
n−1,i are the co-located original and reconstructed pixel values in

Fig. 1. Standard compliant implementation of the proposed temporal
filtering.

the previous frame. It should be noted that if the difference be-
tween the reconstructed pixels is similar or smaller than that between
the original pixels, D

j

flicker,n,i is small or zero, and thus flicker
should not be perceived. This means that the encoding process is
not producing abrupt luminance changes between consecutive re-
constructed frames. More details about this metric can be found in
[3].

The flicker distortion of a block is computed by accumulating
pixel-wise distortions:

Dflicker,n,i =
∑

j

D
j

flicker,n,i. (3)

Our method relies on this metric to decide whether each block is
filtered or not; thus, only those blocks for which the filtering reduces
this flicker metric are actually filtered.

2.2. Standard compliant implementation

Our goal is to implement the proposed method in the encoder, so that
the generated bitstream will be decodable by any standard decoder
implementation. With this objective in mind, we propose to obtain
a modified version of the Intra residue by considering the filtered
version of the pixel block (1) as the target, i.e.:

R
′j
n,i = f̂

′j
n,i − Pred

j
n,i, (4)

where R
′j
n,i is the modified residue, f̂

′j
n,i is the filtered pixel value,

and Pred
j
n,i is the corresponding Intra prediction. In this manner,

in the absence of the quantization process, the decoder would recon-
struct the filtered pixel values.

The implementation of the filtering process in a standard com-
plying manner is summarized in Fig. 1, where T , Q, T−1, and
Q−1 stand for the transformation, quantization, inverse transforma-
tion, and inverse quantization processes, respectively. As can be ob-
served, we need to generate the regular reconstructed version of the
pixel block (f̂n,i) as shown in part A of the Figure, which illus-
trates the typical encoder-decoder loop at the encoder side. Then,
we have to generate the low-pass filtered version (f̂

′

n,i) and the mod-

ified residue R
′

n,i, as illustrated in part B. And finally, R
′

n,i is trans-
formed, quantized and entropy coded, as illustrated in part C, before
including it in the bitstream.
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Fig. 2. Experimental evaluation of the relationship between α,
PSNRloss and Dflicker for several sequences.

2.3. On-the-fly estimation of the α filter parameter: controlling
the blur

As can be easily inferred from (1) and (2), the lower the α value is,
the more similar the filtered pixels are to the previous-frame corre-
sponding pixels, and the lower flicker distortion is; and vice-versa.
On the other hand, the lower the α value is, the stronger the low-
pass behavior -and thus the PSNR loss-, and the more likely is that
the blurring effect is noticeable.

Therefore, an algorithm that allows for controlling the α param-
eter on a block basis during the encoding process is necessary. The
goal is to reduce the flicker distortion while controlling the loss in
the PSNR for each block, so that the blurring effect remains (to some
extent) unnoticeable.

2.3.1. Problem formulation and proposed solution

For each block i, we would like to minimize the flicker distor-
tion Dflicker,i (where we have removed the dependence with the
frame number for convenience), while keeping the PSNR loss
(PSNRloss,i) under a given user-defined threshold, PSNRloss,tar:

min
αi

{

Dflicker,i(αi)
}

subject to PSNRloss,i(αi) ≤ PSNRloss,tar.

(5)
To solve (5), we have experimentally studied the relationship

between αi, PSNRloss,i, and Dflicker,i from data collected from
various sequences. For these experiments, we have implemented the
proposed method in a reference software of the H.264/AVC video
coding standard [9]. The results for three examples (Container at QP
36, Coastguard at QP 32, and Akiyo at QP 40) are shown in Fig.
2. Specifically, the average PSNR loss over the blocks, PSNRloss,
as a function of α is plotted in the left part of the Figure, while
the accumulated flicker distortion Dflicker =

∑

i
Dflicker,i as a

function of α is shown in the right part. It is worth noting that both
measures have been calculated using only the filtered blocks.

Given that Dflicker is a monotonic increasing function of α,
the minimum αi able to meet the PSNR loss restriction (the αi that
makes the PSNRloss,i = PSNRloss,tar), will produce the mini-
mum flicker distortion subject to the PSNR loss constraint, thus solv-
ing (5). In this way, if we were able to model PSNRloss,i as a fun-
tion of αi for each block i, we could obtain the αi value that meets
PSNRloss,i = PSNRloss,tar.

As can be inferred from the curves shown in Fig. 2, the rela-
tionship between α and PSNRloss can be well fitted by means of a

Fig. 3. Visual example of the selected αtar,i for an Intra frame of
the sequence Akiyo at QP 40.

linear model. To obtain on-the-fly the parameters that define the lin-
ear model, we have to evaluate at least two (αi, PSNRloss,i) points
for each block i. Once the parameters of the model are estimated, we
can use it to obtain αtar,i, the value of αi that allows for achieving
PSNRloss,i = PSNRloss,tar in the block i.

Fig. 3 shows an illustrative example of how the proposed
method selects αtar,i. We use an I-frame of the sequence Akiyo
at QP 40 with PSNRloss,tar = 1dB. The higher the αtar,i, the
lighter the color. As can be seen, the areas with more detail are
filtered with higher αtar,i values, as expected.

The complete algorithm is summarized in Algorithm 1. It is
worth noticing that when the obtained αtar,i produces a higher
PSNRloss,i than the PSNRloss,tar, the non-filtered version will
be selected as the best solution.

Algorithm 1 Proposed coding process.
Require: PSNRloss,tar: target PSNR loss
Require: L = 2: number of available αi values for each block to

estimate the PSNRloss,i(αi) linear model
Require: I: number of blocks

1: for ∀i ∈ I do
2: Calculate the non-filtered version of the reconstructed block

and its flicker measure Dflicker,i,non−fil

3: for ∀l ∈ L do
4: Calculate the filtered version of the reconstructed block
5: Store the PSNR loss, PSNRloss,i,l

6: end for
7: Calculate the parameters of the linear model
8: Calculate αtar,i using the PSNRloss,tar in the previous

model
9: Calculate the filtered version of the reconstructed block with

the αtar,i and its flicker measure Dflicker,i,fil

10: if Dflicker,i,fil < Dflicker,i,non−fil then
11: Select as best the filtered version of the block
12: else
13: Select as best the non-filtered version of the block
14: end if
15: end for
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Table 1. Test conditions
Coding options First evaluation Second evaluation

Profile Main Main
Frame rate 25 30

RD Optimization Enabled Enabled
GOP pattern IPPP IPPP

QP values 32, 36, and 40 32, 36, and 40
Intra period 25 5

Symbol Mode CABAC CABAC
Number of Reference Frames 1 1

Frames to be encoded 100 100

3. EXPERIMENTS AND RESULTS

To assess the performance of the proposed method, it was integrated
into the H.264 reference software JM15.1 [10].

We start by comparing two versions of the proposed approach:
the first one uses a fixed α value, while the second one uses an αi

parameter that is estimated on-the-fly, on a block-by-block basis, to
reduce flicker while meeting a PSNRloss,tar constraint. The test
conditions are summarized in the second column of Table 1 (labeled
as “First evaluation”). The experiments were conducted using a set
of nine sequences of two resolutions (CIF, and SD), listed in Table
2. For the fixed-α version (Fα), we use α = 0.7. For the on-the-
fly estimated-αi version (OEα), we have selected two PSNR loss
constraints: PSNRloss,tar = 1dB, 2dB.

Table 2 shows the results of the two compared versions of the al-
gorithm 1. We provide two performance indicators: flicker reduction
and PSNRloss. The flicker reduction (FR) has been computed in
relative terms with respect to the flicker distortion of the reference
H.264/AVC implementation, as follows:

FR(%) =
Dflicker(JM15.1) − Dflicker(Method)

Dflicker(JM15.1)
× 100. (6)

It is worth noticing that FR has been computed taking into account
only the filtered blocks, and averaging over the three considered QP
values. The PSNRloss has been also calculated with respect to the
reference software and averaged over the processed blocks and the
QP values.

Some conclusions can be extracted from the results in Table
2. First, it can be seen that the proposed OEα actually achieves a
PSNRloss close to the target PSNRloss,tar. Consequently, we are
minimizing Dflicker subject to the PSNRloss constraint. Further-
more, the FR follows the expected behavior. In particular, the lower
PSNRloss,tar, the lower FR, and vice-versa. Second, let us com-
pare Fα (columns 2 and 3) with OEα with PSNRloss,tar = 2dB

(columns 4 and 5). As can be seen, both methods achieve a very
similar FR. Nevertheless, OEα obtains an average PSNRloss of
1.5 dB, while Fα obtains an average PSNRloss of 2.4 dB. Addi-
tionally, the standard deviation of PSNRloss is much lower for the
OEα (0.2 dB) than for the Fα (1 dB). The reason is that Fα does not
take into account the video content. Therefore, in some sequences
like Flower or Football, filtering high-frequency blocks with a fixed
α value produces significant PSNR losses.

We have also compared our proposal with a state-of-the-art
flicker reduction method proposed by Chun et al. [1]. To conduct
a fair comparison, we have replicated the test conditions in [1].
The third column of Table 1 (labeled as “Second evaluation”) sum-
marizes these conditions. The results are shown in Table 3. It is

1Some visual examples obtained using the proposed method are available
at http://www.tsc.uc3m.es/∼ajimenez/ICASSP2013.

Table 2. Comparative performance evaluation of two versions of the
proposed method.

Fα OEα OEα

(α = 0.7) (PSNRloss,tar = 2dB) (PSNRloss,tar = 1dB)
Sequence FR PSNRloss FR PSNRloss FR PSNRloss

Container (CIF) 31.53 2.6 41.10 1.5 27.41 0.9
Coastguard (CIF) 26.70 2.6 31.92 1.7 20.07 0.9
Bridge-far (CIF) 50.73 1.2 52.68 1.1 40.88 0.8

Bridge-close (CIF) 24.77 1.8 44.07 1.4 31.16 0.8
Flower (CIF) 34.30 3.3 20.03 1.6 12.74 0.8
Nature (CIF) 31.29 1.1 28.66 1.7 23.03 1.0
Akiyo (CIF) 34.91 2.3 26.38 1.7 17.16 1.0

Football (CIF) 31.11 4.2 33.68 1.4 23.73 0.8
Corvette (SD) 31.31 2.6 33.26 1.6 23.46 1.0

Average 32.96 2.4 34.64 1.5 24.40 0.9

Table 3. Comparative performance evaluation vs. [1].
[1] OEα

(PSNRloss,tar = 0.2dB)
Sequence FR PSNRloss FR PSNRloss

Container (CIF) 3.37 0 12.16 0.2
Coastguard (CIF) 0 0 8.96 0.3
Bridge-far (CIF) 0.24 0 38.67 −0.1

Bridge-close (CIF) 5.44 0 16.95 0.2
Flower (CIF) 17.81 −0.1 4.77 0.3
Nature (CIF) 6.67 0 26.28 0.1
Akiyo (CIF) 10.60 0 12.55 0.2

Football (CIF) 9.97 0 9.08 0.4
Corvette (SD) 10.82 0 23.49 0.6

Average 7.21 0 16.99 0.2

worth noticing that the method by Chun et al. incurs in a negligi-
ble PSNRloss, but, on the other hand, the achieved FR is quite
modest. This is because Chun’s method relies on a modified mode
decision process that takes into account the flicker distortion in the
RDO, but this strategy does not provide enough degrees of freedom
to significantly reduce the flicker distortion. To conduct a fair com-
parison, we have configure the proposed method to achieve very low
PSNR losses; in particular, we have used PSNRloss,tar = 0.2dB.
The results in Table 3 show that the proposed method achieves
higher flicker reductions than those of Chun’s method for almost
all the sequences. On the other hand, our PSNR losses are slightly
higher than those obtained by Chun’s method. However, these losses
are kept low and close to the target.

Finally, we must highlight that our method is able to properly
work in different test conditions, as can be inferred from the two
types of assessments presented in this section.

4. CONCLUSIONS AND FURTHER WORK

In this work, we have proposed a flicker reduction method based on a
temporal motion-guided low-pass filtering. Specifically, this filtering
process reduces the difference between reconstructed pixels of the
same region in consecutive frames, reducing flicker and improving
the visual quality. Moreover, to avoid the appearance of side-effects
owing to the low-pass filtering, such as blurring, we have proposed
an on-the-fly method to control the PSNR loss.

We have proved experimentally that our method achieves high
flicker reductions. For example, fixing a maximum PSNR loss con-
straint of 2 dB in the filtered blocks, the FR remains above 34 %.
Moreover, we have shown that our method is able to properly work in
different coding conditions, outperforming a state-of-the-art flicker
reduction method.

An interesting future line of research will focus on reducing the
computational cost associated with the on-the-fly selection of the fil-
ter parameter.
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