
TENSOR VIDEO CODING

Abo Talib Mahfoodh and Hayder Radha, IEEE Fellow

Department of Electrical and Computer Engineering,

Michigan State University, East Lansing, MI, USA

Emails: {mahfoodh,radha}@msu.edu

ABSTRACT

In this paper, we exploit the intrinsic tensor-nature of video

and propose a Tensor Video Coding (TVC) framework that

is based on tensor decomposition. We develop a Progressive

Canonical-decomposition Parallel-factor (PCP) framework

that is tailored for video representation and coding. Our

simulation results show that the proposed TVC approach

outperforms state-of-the-art video coding methods that do

not rely on motion estimation or compensation.

Index Terms—Tensor Decomposition, Video Coding,

CP Tensor Decomposition, Rank-one Tensors

1. INTRODUCTION

In this paper, we propose a low-complexity video

representation and coding scheme based on tensor

factorization. We refer to our proposed framework, which

does not rely on any form of Motion Estimation (ME) or

Motion Compensation (MC), as Tensor Video Coding

(TVC). The proposed TVC can be targeted for applications

and devices that tolerate delay but require low-complexity at

both the encoder and decoder. We show that TVC

outperforms state-of-the-art video coding schemes that do

not employ ME. Among such video coding schemes are

Motion JPEG2000 [1] and H.264/AVC-Intra [2][3], both of

which are based on coding each frame without exploiting

temporal redundancy. H.264/AVC-no motion [2][4] codes a

Group Of Pictures (GOP) such that the first frame is coded

as a reference (i.e. I frame) and the other frames in the same

GOP are coded as predicted pictures. This latter coding

scheme exploits the temporal redundancy without

employing any ME. Another set of low complexity video

coding schemes are based on dimensionality reduction by

means of tensor decomposition. 2DSVD video coding [5] is

one of the recent developed frameworks in this family.

Furthermore, [6–12] employed tensor factorization to

represent visual data such as dynamic textures and image

ensembles.

Tensor factorization, which is a generalization of matrix

SVD decomposition , has received a great deal of attention

recently [13–18]. There are two main tensor decomposition

methods. The first one is known as Higher Order SVD

(HOSVD) or Tucker decomposition [16]. The second

decomposition, and arguably more popular, is known as

Canonical-decomposition Parallel-factor (CP) method. This

decomposition factorizes a tensor onto a number of rank-one

tensors [16]. For more information on these and other tensor

decomposition methods we refer to [13–18].

A key objective of the proposed TVC framework is to

develop a CP-based tensor decomposition to represent and

code video efficiently. However, the standard CP

decomposition does not lead to an efficient representation of

natural video. Consequently, we propose a new CP-based

tensor decomposition, which we refer to as Progressive CP

(PCP), and which lends itself to efficient video

representation. The proposed PCP pursues a decomposition

that leads to a small number of rank-one tensors. Similar to

CP, the PCP rank-one tensors are represented using a set of

1D vectors. We refer to these 1D vectors as eigenfibers. (For

tensors, a fiber is a generalization of row-wise or column-

wise vector in matrices.) The proposed TVC framework

represents and codes a video with a set of eigenfibers as

explained in detail later in this paper. To the best of our

knowledge, this is the first general coding framework based

on employing rank-one tensor decomposition. Prior methods

were employed only for dynamic textures or for very low-

rank videos that have virtually identical or similar fibers in

all spatiotemporal directions[6–8], [11], [12].

After a brief review of CP, Section 2 describes the

proposed PCP approach. Section 3 presents our TVC

framework, and Section 4 presents our simulation results.

2. CP-BASED TENSOR VIDEO DECOMPOSITION

2.1. CP Factorization

A grayscale video is a 3D tensor , where

(,) are the spatial and () temporal dimensions. CP

decomposes a 3D tensor onto a number of rank-one

tensors, each of which can be written as an outer product of

three vectors [16]:

 ̂ ∑ (

)
 (1)

where is an outer product, and is a normalization value

that maintains an unit norm for the vectors

,
{ } [16]. Hence, the tensor is approximated using a

linear combination of rank-1 tensors (

); and

1724978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

the rank parameter is the number of rank-one tensors used

to approximate . Here,

 are column vectors of a

corresponding set of matrices (i.e. where).

For example,

 is a matrix. In

general, . These matrices can be found using:

‖ ()

‖

 (2)

Here, is Khatri-Rao product, { },
{ } { }, and { } { }. is a matrix

that results from unfolding the tensor with respect to the

 th
 dimension. For example, is a matrix

that results from unfolding the original tensor with respect

to the first dimension (i.e.). Similarly, and are

the unfolded original tensors with respect to the second ()

and third () dimensions [16]. For a given rank parameter

 , the Alternative Least Square (ALS) [19] approach can be

used to solve for the set of matrices in (2). It solves for

by fixing and and similarly for and :

 (
)

(()

())

 (3)

where .

2.3. Progressive CP for Video Decomposition

A straightforward approach for tensor-based video

representation is to directly employ the CP decomposition

onto an original video sequence. However, such

straightforward approach does not result in an efficient

coding method (as we explain further below). Furthermore,

independent of the form of tensor decomposition used, the

rank parameter should not be fixed throughout the tensor

decomposition of the entire video tensor. In particular, the

value of directly influences the rate and efficiency of the

video representation since it determines the number of rank-

one tensors used for this representation. Meanwhile,

different parts of the video tensor have different levels of

spatial and temporal details. In our proposed CP-based

solution we apply different tensor decompositions/ranks to

different 3D blocks of the original tensor signal. Hence, for

the remainder of the paper, a 3D tensor represents a 3D

video-block. It is a cubic portion of a video that covers the

two spatial plus temporal dimensions.

Now, we highlight some of the key characteristics of the

proposed PCP-based decomposition. Unlike traditional CP,

the proposed PCP has an extra loop to solve for each rank-

one tensor progressively. In principle, PCP tries to estimate

a given 3D video-block with a rank-one tensor. If the error

is higher than a threshold , it will add another rank-one

tensor to estimate the residual. This will continue until the

error becomes smaller than or it reaches some

maximum allowable rank . PCP is different from

traditional CP in that the later estimates all rank-one tensors

at once, while PCP estimates them individually in a

progressive manner. This represents a crucial and

fundamental difference between the two frameworks.

Similar to CP, the approximated tensor (̂ under PCP is

a sum of rank-one tensors. However, the PCP

decomposition results in different rank-one tensors and

corresponding vectors from what is generated by CP. We

also use a different normalization as explained further

below. To emphasize the difference between the two

schemes, we express the PCP decomposition using different

notations for the rank-one tensors and normalization

parameters:

 ̂ ∑

 (4)

where, under PCP, { }. Similar to CP,

are column vectors of a corresponding set of matrices
where . Under PCP though, there are two key

differences:

(1) We solve for the vectors

 using:

‖(∑

)

(

)

‖

 (5)

where

 { }, { } { },
and { } { }. is the rank-one tensor

unfolded over dimension , and { }.

(

)

. For a given rank

parameter , we modify the ALS approach to solve the

minimization problem in (5). Similar to CP, we fix

 and

 and solve for

; and similarly for

 and

:

 (∑

)(

)

((

)

)

 (6)

At each iteration we calculate the error
 ̂ , where ̂ is obtained from (4). If the error is larger

than the maximum acceptable value (i.e.), then

another rank-one tensor will be added to approximate the

residual ̂ in the next iteration. This approximation

results in a progressive decomposition of . The stop

criterion is or . This procedure aims at

minimizing the global MSE while keeping it smaller than

 by forcing the condition to each 3D block; and

meanwhile we are constraining the maximum rank for each

3D block by employing . The later constraint

effectively keeps the overall rate below a certain level. A

more elaborate rate-control solution will be presented in a

future paper.

(2) As mentioned above, under CP, the rank-one tensors

are normalized by maintaining an unit-norm vectors. This

is captured through in (1). Under PCP, we employ an

norm instead. This leads to the following: (a) the

normalizing parameter captures the maximum

magnitudes of the entries of the corresponding vectors

,

 ; and (b) the vectors

 have normalized values

between and .

As we show below, the proposed PCP lends itself to more

efficient video coding when compared to traditional CP.

1725

3. TENSOR VIDEO CODING WITH PCP

 We refer to the normalized vectors

 resulting from

the proposed PCP decomposition as eigenfibers. Once

evaluated for all 3D blocks of a video, we can arrange these

eigenfibers onto the columns of a 2D matrix . Thus, we

can apply a 2D compression scheme to this matrix (i.e.,

treating it as an image); and subsequently, we can decode its

columns, which represent the eigenfibers

, to reconstruct

the original video. Two important questions need to be

answered: (1) How should the eigenfibers

 be arranged

within the matrix ? And (2) How much correlation does

exist among these eigenfibers? To address these questions,

we need to introduce an index for the 3D blocks within a

video tensor. A given 3D video-block is indexed by ().
 Recall that under PCP each block has its own rank, and

hence we denote to represent the number of rank-one

tensors used for approximating video-block . Consequently,

the total number of rank-one tensors used for approximating

the whole video is: ∑

 , where is the total number of

3D blocks in the video. Since each rank-one tensor requires

three eigenfibers:

 , for and

 ; then we have a total of 3∑

 eigenfibers to

code. There are many options for arranging these

eigenfibers

 onto the matrix that we plan to compress

as a 2D image. Here, we employ the arrangement shown in

the example of Fig. 1. In this example, we generated the

eigenfibers of 180 frames of the Container CIF video. We

divided the video into 16×16×180 3D blocks, which results

into 396 tensor blocks. (For clarity and ease-of-illustration

purposes, we are only showing the eigenfibers for the first

72 blocks chosen in a raster-scan order.) All eigenfiber

values are mapped from their normalized range

onto the traditional pixel values. As shown in the

figure, we employ the following arrangement:

(1) Vertical arrangement: The eigenfibers

 are put at

the top of the 2D image; each fiber is of height 16. Next, the

second eigenfibers

, also with height 16, are placed

below

. These two groups of eigenfibers capture the

16×16 spatial information of the video-blocks. Meanwhile,

the third eigenfibers

 with height 180 are placed below;

and these later eigenfibers capture the temporal information

of the 3D video-blocks.

(2) Horizontal arrangement: More importantly, we

separate the eigenfibers associated with the first rank-one

tensors (i.e., for) from the rest of all other eigenfibers

with higher rank index (i.e. for). This separation is

analogous to differentiating between “DC” and “AC”

coefficients in traditional image and video coding. For

higher rank indices, , we simply place the eigenfibers

according to the blocks they belong to in a raster-scan order.

We have also experimented with other horizontal

arrangements for eigenfibers with .

Fig. 1. Eigenfibers of the PCP tensor decomposition and the rank

values for 72 blocks of the Container CIF video with 180 frames.

(a) (b)

 (c) (d)

Fig. 2. The autocorrelation among (a) The CP vectors; (b) The

proposed PCP eigenfibers; (c) After absorption onto ; and

(d) After absorption onto . The video is Container CIF.

For example, one can group eigenfibers with ,

followed by ones with , and so on. We observed little

improvement in coding efficiency while using such

arrangement; meanwhile it increases the complexity due to

the need of performing matrix permutations at both the

encoding and decoding sides.

(3) Absorbing the normalization parameters : As shown

in Fig. 1, the temporal eigenfibers

 are multiplied with

the corresponding parameters . There are two benefits

for absorbing these parameters onto the eigenfibers. First,

we eliminate the need for coding these parameters

separately. Second, this multiplication process improves the

correlation among the eigenfibers within the 2D image as

we discuss below.

 It is important to note that for a given 3D block, the three

eigenfibers (

) are expected to be uncorrelated.

However, if we consider different 3D video-blocks of

similar spatial and temporal characteristics, then we

anticipate that the eigenfibers across such blocks to be

correlated. These correlated eigenfibers across similar

spatiotemporal 3D video-blocks represent a key aspect for

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70
0

10

𝑗

1726

achieving efficient tensor representation and coding of the

underlying video. Moreover, the entries within the

eigenfibers can also be correlated. In other words, if we

consider the first entry of an eigenfiber

, then it will be

desired to have this entry correlated with other entries

within the same eigenfiber. Such intra-eigenfiber correlation

is captured by the correlation among the rows of the

eigenfiber matrix shown in Fig.1. The proposed PCP

decomposition provides higher intra-eigenfibers correlation

(arguably significantly higher) than what can be achieved

under CP. Fig. 2 shows the autocorrelation among the

entries of factored vectors

 of the Container

video using CP and the autocorrelation among the entries of

the eigenfibers (

 under the proposed PCP

decompositions. By comparing figures 2(a) and 2(b), it

should be clear that PCP provides eigenfibers with higher

autocorrelation. Figures 2(c) and 2(d) also show the impact

of absorbing the normalization parameters (for CP) and

 (for PCP) within the corresponding eigenfibers.

 The final step in TVC is to code the rank parameters

for all 3D blocks. We simply arrange these values onto a

vector and entropy code them in a lossless manner.

4. SIMULATION RESULTS

In our simulations, we simply employ JPEG2000 to

compress the eigenfibers’ matrix. Other 2D compression

methods can be considered in the future. Huffman and run-

length coding are applied to compress the rank-values .

We evaluated TVC using more than 10 video test

sequences, and we compare its performance with five low

complexity encoders described in [5]. Here, we present the

results of TVC coding over 180 frames of the Container and

Silent CIF videos only (at 30 frames per second) due to

space limitation and more importantly to be consistent with

[5]. The PSNR plots are shown in Fig. 3. The results of the

first five encoders are extracted from [5]. TVC outperforms

the other five encoders over a wide range of bitrates, and it

results in higher PSNR than the best competing method by

up to 2 db. Note that we changed the block size and

accordingly to obtain the highest possible PSNR at different

bit rates. We are investigating a TVC that has variable block

sizes.

To compare the complexity aspects, we coded 180

frames of Container and Silent CIF videos using four

different encoders. In this experiment we kept the PSNR

values close together to compare the bit rates and the

encoding/decoding time. The four encoders are:

1- H.264/AVC-no motion, main profile, GOP of size 24

and number of reference frames equals to one. The JM18.4

version implemented in C/C++ was used.

2- H.264/AVC-Intra, main profile, and the period of I-

pictures was set to one (JM18.4 version).

3- DISCOVER DVC codec [20] with GOP size of two.

The C/C++ implementation available in [21] was used.

4- The proposed TVC with block size 16×16×180,

 , and for container video and block

size 32×32×180, and for silent video.

The TVC is implemented in MATLAB. Hence, the

implementation can be optimized further.

Table 1 shows the results, where all codecs are evaluated at

a desktop computer with 12 GB of memory and an Intel

Core i7 2600 CPU (8MB Cache, 3.4 GHz). It is very clear

that TVC provides the best bitrate results and very

competitive encoder/decoder times. As expected, DVC

provided the best encoding times but at a significant penalty

at the decoder side. Overall, TVC provides a good balance

of coding efficiency and low-complexity (despite its

MATLAB implementation).

Fig. 3. PSNR plots of six low complexity video coders for (a)

Container (b) Silent CIF videos.

Table 1. The encoding/decoding time, PSNR and bit rate of

Container and Silent CIF videos with 180 frames using four coding

methods.

Method Video

P
S

N
R

(d
b

)

b
it rate

(K
b

p
s)

E
n

co
d

e

tim
e (s)

D
eco

d
e

tim
e (s)

H.264/AVC-

no motion

Container 36.37 1008 101 5

Silent 34.54 495 90 4.47

H.264/AVC-

Intra

Container 36 2092 114 9.2

Silent 34.67 1800 114 9.3

DISCOVER
Container 36.67 1298 95 1440

Silent 34.19 1092 65 1929

TVC
Container 36.4 604 134 4.2

Silent 34.67 379 150 4.9

200 400 600 800 1000 1200
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Bit Rate (Kbps)

P
S

N
R

 (
d

b
)

(a) Container CIF Video

TVC

2DSVD

H.264-noMotion

DVC Intra

MJPEG-DPCM

H.264Intra

200 400 600 800 1000 1200
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Bit Rate (Kbps)

P
S

N
R

 (
d

b
)

(b) Silent CIF Video

DISCOVER

1727

6. REFERENCES

[1] “Information technology -- JPEG 2000 image

coding system: Motion JPEG 2000: ISO/IEC 15444-

3:2007.” .

[2] JV Team, “Advanced video coding for generic

audiovisual services,” ITU-T Rec. H, 2012.

[3] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A.

Luthra, “Overview of the H . 264 / AVC Video

Coding Standard,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 13, no. 7,

pp. 560–576, 2003.

[4] R. Martins, C. Brites, J. Ascenso, and F. Pereira,

“Refining Side Information for Improved Transform

Domain Wyner – Ziv Video Coding,” IEEE

Transactions on Circuits and Systems for Video

Technology, vol. 19, no. 9, 2009.

[5] Z. Gu, W. Lin, B. Lee, and C. Lau, “Low-

complexity video coding based on two-dimensional

singular value decomposition.,” IEEE transactions

on image processing : a publication of the IEEE

Signal Processing Society, vol. 21, no. 2, pp. 674–

687, Feb. 2012.

[6] B. Zhou, F. Zhang, and L. Peng, “Compact

Representation for Dynamic Texture Video Coding

using Tensor Method,” 2004.

[7] B. Zhou, F. Zhang, and L. Peng, “Video dimension

reduction and coding using Multiple Tensor Rank-R

Decomposition,” 4th International Congress on

Image and Signal Processing, pp. 330–334, Oct.

2011.

[8] C. Ding, H. Huang, and D. Luo, “Tensor Reduction

Error Analysis – Applications to Video

Compression and Classification,” Computer Vision

and Pattern Recognition, 2008.

[9] M. Vasilescu and D. Terzopoulos, “Multilinear

Analysis of Image Ensembles : TensorFaces,”

European Conference on Computer Vision, pp. 447–

460, 2002.

[10] H. Wang and N. Ahuja, “Rank-R Approximation of

Tensors Using Image-as-Matrix Representation,”

IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, vol. 2, pp. 346–

353, 2005.

[11] R. Costantini, L. Sbaiz, and S. Süsstrunk, “Higher

order SVD analysis for dynamic texture synthesis.,”

IEEE transactions on image processing : a

publication of the IEEE Signal Processing Society,

vol. 17, no. 1, pp. 42–52, Jan. 2008.

[12] H. Wang and N. Ahuja, “Compact representation of

multidimensional data using tensor rank-one

decomposition,” Proceedings of the 17th

International Conference on Pattern Recognition,

vol. 1, pp. 44–47, 2004.

[13] R. M. Bowen and C.-C. Wang, Introduction to

Vectors and Tensors, vol. 2. Dover Publications,

2009.

[14] A. Cichocki, R. Zdunek, A. Phan, and S. Amari,

Nonnegative matrix and tensor factorizations:

applications to exploratory multi-way data analysis

and blind source separation. Wiley, 2009.

[15] P. Comon, “Tensor decompositions,” Mathematics

in Signal Processing V, 2002.

[16] T. G. Kolda and B. W. Bader, “Tensor

decompositions and applications,” SIAM review,

vol. 51, no. 3, pp. 455–500, 2009.

[17] W. Hackbusch, Tensor spaces and numerical tensor

calculus. Springer, 2012.

[18] K. Dullemond and K. Peeters, Introduction to

Tensor Calculus. 2010.

[19] J. Carroll and J. Chang, “Analysis of individual

differences in multidimensional scaling via an N-

way generalization of ‘Eckart-Young’

decomposition,” Psychometrika, vol. 35, no. 3, pp.

283–319, 1970.

[20] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D.

Kubasov, and M. Ouaret, “The DISCOVER codec:

architecture, techniques and evaluation,” Picture

Coding, vol. 17, no. 9, pp. 1103–1120, 2007.

[21] “DISCOVER.” [Online]. Available:

http://www.discoverdvc.org/. [Accessed: 20-Nov-

2012].

1728

