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ABSTRACT 

 
In this paper, we exploit the intrinsic tensor-nature of video 

and propose a Tensor Video Coding (TVC) framework that 

is based on tensor decomposition. We develop a Progressive 

Canonical-decomposition Parallel-factor (PCP) framework 

that is tailored for video representation and coding. Our 

simulation results show that the proposed TVC approach 

outperforms state-of-the-art video coding methods that do 

not rely on motion estimation or compensation. 

 

Index Terms—Tensor Decomposition, Video Coding, 

CP Tensor Decomposition, Rank-one Tensors 

 

1. INTRODUCTION 

 

In this paper, we propose a low-complexity video 

representation and coding scheme based on tensor 

factorization. We refer to our proposed framework, which 

does not rely on any form of Motion Estimation (ME) or 

Motion Compensation (MC), as Tensor Video Coding 

(TVC). The proposed TVC can be targeted for applications 

and devices that tolerate delay but require low-complexity at 

both the encoder and decoder. We show that TVC 

outperforms state-of-the-art video coding schemes that do 

not employ ME. Among such video coding schemes are 

Motion JPEG2000 [1] and H.264/AVC-Intra [2][3], both of 

which are based on coding each frame without exploiting 

temporal redundancy. H.264/AVC-no motion [2][4] codes a 

Group Of Pictures (GOP) such that the first frame is coded 

as a reference (i.e. I frame) and the other frames in the same 

GOP are coded as predicted pictures. This latter coding 

scheme exploits the temporal redundancy without 

employing any ME. Another set of low complexity video 

coding schemes are based on dimensionality reduction by 

means of tensor decomposition. 2DSVD video coding [5] is 

one of the recent developed frameworks in this family. 

Furthermore, [6–12] employed tensor factorization to 

represent visual data such as dynamic textures and image 

ensembles.  

Tensor factorization, which is a generalization of matrix 

SVD decomposition , has received a great deal of attention 

recently [13–18].  There are two main tensor decomposition 

methods. The first one is known as Higher Order SVD 

(HOSVD) or Tucker decomposition [16]. The second 

decomposition, and arguably more popular, is known as 

Canonical-decomposition Parallel-factor (CP) method. This 

decomposition factorizes a tensor onto a number of rank-one 

tensors [16]. For more information on these and other tensor 

decomposition methods we refer to [13–18]. 

A key objective of the proposed TVC framework is to 

develop a CP-based tensor decomposition to represent and 

code video efficiently. However, the standard CP 

decomposition does not lead to an efficient representation of 

natural video. Consequently, we propose a new CP-based 

tensor decomposition, which we refer to as Progressive CP 

(PCP), and which lends itself to efficient video 

representation. The proposed PCP pursues a decomposition 

that leads to a small number of rank-one tensors. Similar to 

CP, the PCP rank-one tensors are represented using a set of 

1D vectors. We refer to these 1D vectors as eigenfibers. (For 

tensors, a fiber is a generalization of row-wise or column-

wise vector in matrices.) The proposed TVC framework 

represents and codes a video with a set of eigenfibers as 

explained in detail later in this paper. To the best of our 

knowledge, this is the first general coding framework based 

on employing rank-one tensor decomposition. Prior methods 

were employed only for dynamic textures or for very low-

rank videos that have virtually identical or similar fibers in 

all spatiotemporal directions[6–8], [11], [12].  

After a brief review of CP, Section 2 describes the 

proposed PCP approach. Section 3 presents our TVC 

framework, and Section 4 presents our simulation results. 

 

2. CP-BASED TENSOR VIDEO DECOMPOSITION 

 

2.1. CP Factorization 
 

A grayscale video is a 3D tensor            , where 

(  ,   ) are the spatial and (  ) temporal dimensions. CP 

decomposes a 3D tensor    onto a number of rank-one 

tensors, each of which can be written as an outer product of 

three vectors [16]:  

 ̂   ∑   (  
   

   
   

   
   

) 
     (1) 

 

where   is an outer product, and     is a normalization value 

that maintains an    unit norm for the vectors   
   

,   
{     } [16]. Hence, the tensor   is approximated using a 

linear combination of rank-1 tensors (  
   

   
   

   
   

); and 
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the rank parameter   is the number of rank-one tensors used 

to approximate  . Here,   
   

 are column vectors of a 

corresponding set of matrices (i.e.       where        ). 

For example,         
   

   
   

   
   

  is a      matrix. In 

general,           . These matrices can be found using: 
 

            
    

‖         (           )
 
‖

 
  (2) 

Here,   is Khatri-Rao product,   {     },    
{     }  { }, and    {     }  {    }.      is a matrix 

that results from unfolding the tensor   with respect to the 

 th
 dimension. For example,                 is a matrix 

that results from unfolding the original tensor   with respect 

to the first dimension (i.e.   ). Similarly,      and      are 

the unfolded original tensors with respect to the second (  ) 

and third (  ) dimensions [16]. For a given rank parameter 

 , the Alternative Least Square (ALS) [19] approach can be 

used to solve for the set of matrices in (2). It solves for      

by fixing      and      and similarly for       and     :   
 

          ( 
   )

 
((    )

 
(    ))
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where                 . 

 

2.3. Progressive CP for Video Decomposition 
 

A straightforward approach for tensor-based video 

representation is to directly employ the CP decomposition 

onto an original video sequence. However, such 

straightforward approach does not result in an efficient 

coding method (as we explain further below). Furthermore, 

independent of the form of tensor decomposition used, the 

rank parameter   should not be fixed throughout the tensor 

decomposition of the entire video tensor. In particular, the 

value of   directly influences the rate and efficiency of the 

video representation since it determines the number of rank-

one tensors used for this representation. Meanwhile, 

different parts of the video tensor have different levels of 

spatial and temporal details. In our proposed CP-based 

solution we apply different tensor decompositions/ranks to 

different 3D blocks of the original tensor signal. Hence, for 

the remainder of the paper, a 3D tensor   represents a 3D 

video-block. It is a cubic portion of a video that covers the 

two spatial plus temporal dimensions.  

Now, we highlight some of the key characteristics of the 

proposed PCP-based decomposition. Unlike traditional CP, 

the proposed PCP has an extra loop to solve for each rank-

one tensor progressively. In principle, PCP tries to estimate 

a given 3D video-block with a rank-one tensor. If the error 

is higher than a threshold     , it will add another rank-one 

tensor to estimate the residual. This will continue until the 

error becomes smaller than      or it reaches some 

maximum allowable rank     . PCP is different from 

traditional CP in that the later estimates all rank-one tensors 

at once, while PCP estimates them individually in a 

progressive manner. This represents a crucial and 

fundamental difference between the two frameworks.  

Similar to CP, the approximated tensor ( ̂  under PCP is 

a sum of rank-one tensors. However, the PCP 

decomposition results in different rank-one tensors and 

corresponding vectors from what is generated by CP. We 

also use a different normalization as explained further 

below. To emphasize the difference between the two 

schemes, we express the PCP decomposition using different 

notations for the rank-one tensors and normalization 

parameters: 

 ̂   ∑      
   

   
   

   
   

  
     (4) 

 

where, under PCP,   {          }. Similar to CP,   
   

 

are column vectors of a corresponding set of matrices       
where        . Under PCP though, there are two key 

differences: 

(1) We solve for the vectors    
   

 using: 
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where   
   

   
       

        {     },    {     }  { }, 
and    {     }  {    }.         is the     rank-one tensor 

unfolded over dimension  , and    {       }.   
      

    
           

   
(  

   
)
 
. For a given rank 

parameter     , we modify the ALS approach to solve the 

minimization problem in (5). Similar to CP, we fix   
   

 and 

  
   

 and solve for   
   

; and similarly for   
   

 and   
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At each iteration   we calculate the error          
  ̂ , where    ̂  is obtained from (4). If the error is larger 

than the maximum acceptable value (i.e.       ), then 

another rank-one tensor will be added to approximate the 

residual     ̂ in the next iteration. This approximation 

results in a progressive decomposition of  . The stop 

criterion is        or       . This procedure aims at 

minimizing the global MSE while keeping it smaller than 

     by forcing the condition to each 3D block; and 

meanwhile we are constraining the maximum rank for each 

3D block by employing     . The later constraint 

effectively keeps the overall rate below a certain level. A 

more elaborate rate-control solution will be presented in a 

future paper. 

(2) As mentioned above, under CP, the rank-one tensors 

are normalized by maintaining an    unit-norm vectors. This 

is captured through    in (1). Under PCP, we employ an    

norm instead. This leads to the following: (a) the 

normalizing parameter    captures the maximum 

magnitudes of the entries of the corresponding vectors   
   

, 

       ; and (b) the vectors   
   

 have normalized values 

between    and   .  

As we show below, the proposed PCP lends itself to more 

efficient video coding when compared to traditional CP. 
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3. TENSOR VIDEO CODING WITH PCP 
 

 We refer to the normalized vectors   
   

 resulting from 

the proposed PCP decomposition as eigenfibers. Once 

evaluated for all 3D blocks of a video, we can arrange these 

eigenfibers onto the columns of a 2D matrix  . Thus, we 

can apply a 2D compression scheme to this matrix   (i.e., 

treating it as an image); and subsequently, we can decode its 

columns, which represent the eigenfibers   
   

, to reconstruct 

the original video. Two important questions need to be 

answered: (1) How should the eigenfibers   
   

 be arranged 

within the matrix  ? And (2) How much correlation does 

exist among these eigenfibers? To address these questions, 

we need to introduce an index for the 3D blocks within a 

video tensor. A given 3D video-block is indexed by ( ). 
 Recall that under PCP each block has its own rank, and 

hence we denote    to represent the number of rank-one 

tensors used for approximating video-block  . Consequently, 

the total number of rank-one tensors used for approximating 

the whole video is: ∑   
  
   , where    is the total number of 

3D blocks in the video. Since each rank-one tensor requires 

three eigenfibers:      
   

     
   

     
   

 , for         and 

       ; then  we have a total of 3∑   
  
    eigenfibers to 

code. There are many options for arranging these 

eigenfibers     
   

 onto the matrix   that we plan to compress 

as a 2D image. Here, we employ the arrangement shown in 

the example of Fig. 1. In this example, we generated the 

eigenfibers of 180 frames of the Container CIF video. We 

divided the video into 16×16×180 3D blocks, which results 

into 396 tensor blocks. (For clarity and ease-of-illustration 

purposes, we are only showing the eigenfibers for the first 

72 blocks chosen in a raster-scan order.) All eigenfiber 

values are mapped from their normalized         range 

onto the traditional         pixel values. As shown in the 

figure, we employ the following arrangement: 

(1) Vertical arrangement: The eigenfibers     
   

 are put at 

the top of the 2D image; each fiber is of height 16. Next, the 

second eigenfibers     
   

, also with height 16, are placed 

below     
   

. These two groups of eigenfibers capture the 

16×16 spatial information of the video-blocks. Meanwhile, 

the third eigenfibers     
   

 with height 180 are placed below; 

and these later eigenfibers capture the temporal information 

of the 3D video-blocks.  

(2) Horizontal arrangement: More importantly, we 

separate the eigenfibers associated with the first rank-one 

tensors (i.e., for    ) from the rest of all other eigenfibers 

with higher rank index (i.e. for    ). This separation is 

analogous to differentiating between “DC” and “AC” 

coefficients in traditional image and video coding. For 

higher rank indices,    , we simply place the eigenfibers 

according to the blocks they belong to in a raster-scan order. 

We have also experimented with other horizontal 

arrangements for eigenfibers with    .  

 
 

Fig. 1. Eigenfibers of the PCP tensor decomposition and the rank 

values   for 72 blocks of the Container CIF video with 180 frames.  
 

 
(a) (b) 

 
 (c) (d) 

Fig. 2. The autocorrelation among (a) The CP vectors; (b) The 

proposed PCP eigenfibers; (c) After    absorption onto     ; and 

(d) After    absorption onto     . The video is Container CIF. 
 

For example, one can group eigenfibers with    , 

followed by ones with    , and so on. We observed little 

improvement in coding efficiency while using such 

arrangement; meanwhile it increases the complexity due to 

the need of performing matrix permutations at both the 

encoding and decoding sides. 

(3) Absorbing the normalization parameters     : As shown 

in Fig. 1, the temporal eigenfibers     
   

 are multiplied with 

the corresponding parameters     . There are two benefits 

for absorbing these parameters onto the eigenfibers. First, 

we eliminate the need for coding these parameters 

separately. Second, this multiplication process improves the 

correlation among the eigenfibers within the 2D image as 

we discuss below. 

 It is important to note that for a given 3D block, the three 

eigenfibers (  
   

   
   

   
   

) are expected to be uncorrelated. 

However, if we consider different 3D video-blocks of 

similar spatial and temporal characteristics, then we 

anticipate that the eigenfibers across such blocks to be 

correlated. These correlated eigenfibers across similar 

spatiotemporal 3D video-blocks represent a key aspect for 
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achieving efficient tensor representation and coding of the 

underlying video. Moreover, the entries within the 

eigenfibers can also be correlated. In other words, if we 

consider the first entry of an eigenfiber   
   

, then it will be 

desired to have this entry correlated with other entries 

within the same eigenfiber. Such intra-eigenfiber correlation 

is captured by the correlation among the rows of the 

eigenfiber matrix shown in Fig.1. The proposed PCP 

decomposition provides higher intra-eigenfibers correlation 

(arguably significantly higher) than what can be achieved 

under CP. Fig. 2 shows the autocorrelation among the 

entries of factored vectors      
   

     
   

     
   

  of the Container 

video using CP and the autocorrelation among the entries of 

the eigenfibers (    
   

     
   

     
   

  under the proposed PCP 

decompositions. By comparing figures 2(a) and 2(b), it 

should be clear that PCP provides eigenfibers with higher 

autocorrelation. Figures 2(c) and 2(d) also show the impact 

of absorbing the normalization parameters      (for CP) and 

     (for PCP) within the corresponding eigenfibers. 

 The final step in TVC is to code the rank parameters    

for all 3D blocks. We simply arrange these values onto a 

vector and entropy code them in a lossless manner.  

 

4. SIMULATION RESULTS 

 

In our simulations, we simply employ JPEG2000 to 

compress the eigenfibers’ matrix. Other 2D compression 

methods can be considered in the future. Huffman and run-

length coding are applied to compress the rank-values   . 

We evaluated TVC using more than 10 video test 

sequences, and we compare its performance with five low 

complexity encoders  described in [5]. Here, we present the 

results of TVC coding over 180 frames of the Container and 

Silent CIF videos only (at 30 frames per second) due to 

space limitation and more importantly to be consistent with 

[5]. The PSNR plots are shown in Fig. 3. The results of the 

first five encoders are extracted from [5]. TVC outperforms 

the other five encoders over a wide range of bitrates, and it 

results in higher PSNR than the best competing method by 

up to 2 db. Note that we changed the block size and      

accordingly to obtain the highest possible PSNR at different 

bit rates. We are investigating a TVC that has variable block 

sizes. 

To compare the complexity aspects, we coded 180 

frames of Container and Silent CIF videos using four 

different encoders. In this experiment we kept the PSNR 

values close together to compare the bit rates and the 

encoding/decoding time. The four encoders are: 

1- H.264/AVC-no motion, main profile, GOP of size 24 

and number of reference frames equals to one. The JM18.4 

version implemented in C/C++ was used. 

2- H.264/AVC-Intra, main profile, and the period of I-

pictures was set to one (JM18.4 version).  

3- DISCOVER DVC codec [20] with GOP size of two. 

The C/C++ implementation available in [21] was used. 

4- The proposed TVC with block size 16×16×180, 

       , and         for container video and block 

size 32×32×180,         and         for silent video.  

The TVC is implemented in MATLAB. Hence, the 

implementation can be optimized further. 

Table 1 shows the results, where all codecs are evaluated at 

a desktop computer with 12 GB of memory and an Intel 

Core i7 2600 CPU (8MB Cache, 3.4 GHz). It is very clear 

that TVC provides the best bitrate results and very 

competitive encoder/decoder times. As expected, DVC 

provided the best encoding times but at a significant penalty 

at the decoder side. Overall, TVC provides a good balance 

of coding efficiency and low-complexity (despite its 

MATLAB implementation). 
 

 
Fig. 3. PSNR plots of six low complexity video coders for (a) 

Container (b) Silent CIF videos.  
 

Table 1. The encoding/decoding time, PSNR and bit rate of 

Container and Silent CIF videos with 180 frames using four coding 

methods. 

Method Video 
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d
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tim
e (s) 

H.264/AVC-

no motion 

Container 36.37 1008 101 5 

Silent 34.54 495 90 4.47 

H.264/AVC-

Intra 

Container 36 2092 114 9.2 

Silent 34.67 1800 114 9.3 

DISCOVER 
Container 36.67 1298 95 1440 

Silent 34.19 1092 65 1929 

TVC 
Container 36.4 604 134 4.2 

Silent 34.67 379 150 4.9 
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