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ABSTRACT
Distributed Video Coding (DVC) is a video coding paradigm
allowing a shift of complexity from the encoder to the de-
coder. Depth maps are images enabling the calculation of the
distance of an object from the camera, which can be used in
multiview coding in order to generate virtual views, but also
in single view coding for motion detection or image segmen-
tation. In this work, we address the problem of depth map
video DVC encoding in a single-view scenario. We exploit
the motion of the corresponding texture video which is highly
correlated with the depth maps. In order to extract the motion
information, a block-based and an optical flow-based meth-
ods are employed. Finally we fuse the proposed Side Infor-
mations using a multi-hypothesis DVC decoder, which allows
us to exploit the strengths of all the proposed methods at the
same time.

Index Terms— Distributed Source Coding, Depth Map
Coding, Wyner-Ziv Coding, Optical Flow, Distributed Video
Coding.

1. INTRODUCTION

In this work we address the coding of depth maps, using DVC
[1, 2] as basis of our coding architecture.

Depth maps are particular images enabling the calcula-
tion of the distance of an object from the camera. A video
representation format that is gaining popularity is the so-
called “video-plus-depth”, where in addition to texture data
(the luminance and chrominance information of the scene),
per-pixel depth information is also provided [3, 4]. Depth
data allows fast generation of virtual views using the so-
called Depth-Image-Based-Rendering (DIBR) algorithms [4],
which makes the video-plus-depth format suitable for 3DTV
and free viewpoint system implementations [5]. Moreover, it
can be used for a number of purposes that can be of interest in
modern video surveillance scenarios such as scene matting,
activity detection and object tracking [3].

DVC is a video coding paradigm that allows shifting the
complexity from the encoder side to the decoder side due to

the fact that Motion Estimation (ME)—which heavily con-
tributes to the computational complexity in state-of-the-art
video codecs—can be performed at the decoder. Typical DVC
scenarios feature strict power consumption constraints at the
transmitter side, requiring low-complexity encoders, while
the requirements are less stringent at the decoder. A multi-
camera video surveillance scenario is a good example of a
system with such requirements [2]. In a typical DVC archi-
tecture [1] inter-coded frames (i.e. frames coded by means
of motion estimation and compensation) are substituted by
the so-called Wyner-Ziv (WZ) frames. WZ frames are en-
coded in a different manner: parity check data are calculated
and transmitted. An Intra-coded frame is referred to as Key
Frame (KF) and is encoded and transmitted as in traditional
video coding. At the decoder side KFs are used to estimate
WZ frames by means of ME. The estimated frame, called Side
Information (SI), can be corrected using parity bits from the
encoder. The SI generation algorithm is therefore of crucial
importance as the quality of the estimated frames directly af-
fects the amount of additional parity bits required, and conse-
quently the Rate-Distortion (RD) performance of the system.
The core part of the proposed decoder is the Transform Do-
main WZ (TDWZ) codec [6]. At the encoder the WZ frame
is DCT transformed and quantized. Each DCT coefficient is
organized in bitplanes, and for each bitplane a LDPCA [7]
encoder calculates the parity bits. At the decoder the SI is
generated using an interpolation-based technique, for exam-
ple Overlapped Block Motion Compensation (OBMC) [6]. A
subset of the parity bits are sent to the decoder. The decoder
tries to correct the errors present in the corresponding bitplane
of the SI using the parity bits. If the decoding is not successful
new bits are requested. Another key element of the decoder
is the noise modelling, which is important in order to provide
the LDPCA decoder with the likelihood of the value of each
bit. The errors present in the SI are modelled as Laplacian
distributed errors. In order to calculate the distribution, an
estimation of the residual is needed. The residual is the dif-
ference between the SI and the original frame, which can not
be directly calculated in practice. For more information on
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DVC coding the reader is referred to [1, 2, 6].
Since texture and depth represent different aspects of the

same 3D scene, the two components show a high correla-
tion [8]. In a video-plus-depth DVC scenario such correla-
tion can be exploited to improve the overall coding efficiency
e.g. by refining the depth SI generation using texture motion
information.

In this paper Transform Domain WZ coding of depth
maps is addressed in a mono-view video-plus-depth scenario.
This scenario is interesting when addressed with DVC be-
cause two dependent streams can be independently encoded
but dependently decoded. This approach can be general-
ized to a multi-camera scenario, where a depth camera and a
texture camera are used together, making inter-camera coop-
eration difficult or not feasible. Texture data are supposed to
be available at the decoder and are used to improve the WZ
decoding of depth data. Three different SIs are generated and
fused using a multi-hypothesis approach [9]. The first SI is
generated by applying block-based texture motion vectors to
the depth component; the second one is obtained by applying
the texture optical flow to the depth component; finally the
third one is generated by means of motion estimation from
depth data only. The three SIs present different characteristics
and provide accurate estimation of the to-be-decoded depth
frame in different regions.

1.1. Related Works

The use of texture motion information for depth compression
purposes has been explored in conventional predictive coding
in [10] and more recently in [11]. The same concepts can
be exploited in a DVC decoder for accurate SI generation, as
done in [12] in which multiple decoded texture frames are
used. In our work we suppose that the decoder has access to
the corresponding texture frame of the to-be-decoded depth
frame, while in [12] only the texture frames corresponding
to the depth KFs are used. Moreover, we investigate optical-
flow-based methods, while [12] investigate only block-based
methods. The multi-hypothesis decoder employed is the same
as in [9] where OBMC was used with block-based extrapola-
tion and optical flow-based interpolation in order to improve
a texture-based DVC decoder. We use the same approach in
order to effectively fuse three different SIs.

A preliminary study of the aforementioned problem has
been performed in [13] but only the block-based method was
presented and no fusion technique was proposed.

Optical flow-based SI generation has already been used
for example in [9]. In this case the flows were used to in-
terpolate an unknown texture frame given the previous and
successive texture frames. In our framework we use the flow
to extract the motion information from texture frames.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the proposed SI generation algorithms and the
relative SI fusion method. In Section 3 experimental results

are discussed. Finally, Section 4 summarizes the presented
work.

2. SI GENERATION AND FUSION

In this section we describe the two proposed SI generation
algorithms for depth maps, exploiting texture motion infor-
mation. We also analyse the employed fusion procedure. In
addition a third SI based on OBMC [6] on depth video is in-
cluded in the fusion procedure. This decoder is used as basis
for evaluating the performance of the two texture-based SIs
and the performance of the fusion procedure. It has to be
noted however, that OBMC has not been devised for depth
maps and it has not been modified in this work.

2.1. Texture-based SI generation algorithms

The main idea behind the proposed methods is that the mo-
tion of the texture is highly correlated with the one encoun-
tered in the depth data. For the to-be-decoded depth frame
X at instant t, assume that the depth maps at instants t − 1,
and t + 1 (Dt−1 and Dt+1, respectively) are known. We can
use the motion information of the texture to warp Dt−1 and
Dt+1 towards X obtaining the SI Y . In order to perform the
aforementioned procedure the texture frames at instants t−1,
t, and t + 1 (Ct−1, Ct, Ct+1, respectively) are available at
the decoder. The Motion Vectors (MVs) are calculated from
Ct to Ct−1 and from Ct to Ct+1. The MVs are used in turn
to motion compensate Dt−1 and Dt+1, obtaining two depth
SIs Y1 and Y2, respectively. The final SI, Y , is calculated as
the arithmetic average of Y1 and Y2. The residual, RY , is cal-
culated as the absolute difference between Y1 and Y2. The
argument behind this simple choice is that if a region in X
presents simple motion, it will be well predicted. Hence Y1
and Y2 will agree in the particular area, leading to low resid-
ual estimation. If on the contrary the two estimated frames
disagree, the residual will be higher.

The methods used to calculate the motion from the tex-
ture data is of central importance to the SI quality. We have
selected two different ME approaches.

2.2. Block-Based Side Information Generation

We consider the so-called “Adaptive Rood Pattern Search”
(ARPS) ME algorithm proposed in [14]. This approach may
not provide the lowest MSE (Mean-Squared-Error) between
the motion compensated texture frame and the original one,
however, it is able to capture the motion between the frames in
a robust way, leading to fewer artefacts in the warped (depth)
frame. ARPS has been proposed as a way to reduce the com-
plexity of the ME process in state-of-the-art predictive cod-
ing, but thanks to the adaptive nature of the pattern and the
refinement step, it produces superior results compared with
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full search in the given setup. This Block-Based SI genera-
tion is referred as BB.

2.3. Optical Flow Side Information Generation

As an alternative to BB, we consider an Optical Flow (OF)
[15] SI generation. As opposed to BB, the OF based ME is
global, in the sense that individual motion vectors are esti-
mated for every pixel. Given a set of texture frames Ct and
Ct′ , (t′ = t+ 1, t− 1), in pixel domain, we want to estimate
the dense flow field v such that the optical flow constraint

D(x, v) , Ct′(x+ v(x))− Ct(x), (1)

where x denotes a point in the image, is close to zero.
The optical flow constraint (1) will not be sufficient for

motion estimation, and in order to make the problem well
posed, one has to penalize irregular behavior. Here we focus
on the TV-L1 energy, where data fidelity between two frames
is measured by the L1-norm of the optical flow constraint,
and the regularization term penalizes the total variation of the
estimated motion:

E(v) =

∫
λ‖D(x, v)‖+ ‖Dv(x)‖ dx. (2)

The total variation of a vector valued function is not uniquely
defined, and several definitions have been used for this prob-
lem [16, 17, 18]. Here we use the definition of [19], since
this method does not suffer from the channel smearing (i.e.
independent optimization of the two channels of the motion
vectors, the x- and y-components) of other definitions.

The final estimate of the motion v is recovered from itera-
tively minimizing a linearized version of (2) using the duality
based splitting of [16]. The minimization is performed in a
coarse to fine pyramid. We use 65 pyramid levels wit a scaling
factor of 1.05, and Gaussian blurring of Ct and Ct′ with stan-
dard deviation 0.5, and on each level we perform 90 warps,
with 1 outer and 10 inner iterations [16]. Furthermore we re-
move outliers by performing a median filtering of the flow for
each warp. The parameter λ was set to 480. Compared to
optical flow based interpolation [9] this value may seem high,
however for the given test setup with higher temporal and spa-
tial resolution, as well as the direct knowledge of the texture
state, this higher weight on data fidelity is adequate. For more
details on the implementation we refer to [18]. OF may lead
to the non pixel location problem, in which a target position
in Dt−1 and Dt+1 does not have integer coordinates. In this
case bicubic interpolation is used.

2.4. Side Information Fusion

In order to exploit all the presented SIs (BB, OF, OBMC) a
robust fusion technique is needed. In [9] it has been demon-
strated that a multi-hypothesis decoder can be used to ef-
fectively combine block-based and pixel-based motion esti-

mation techniques. In our work, we use the three SI de-
coders approach (referred as 3SI) as a way to fuse the three
SIs. The multi-hypothesis decoder allows implementing a
rate-based optimization strategy by using a number of par-
allel LDPCA decoders. Each LDPCA decoder is fed with a
different weighted combination of the conditional probabil-
ities for a given bitplane, and the syndromes coming from
the encoder. Each bitplane contains the co-located bits of a
given DCT coefficient. The decoded sequence of the first con-
verging decoder is chosen as solution, and the corresponding
weights used to combine the SIs are also used in the recon-
struction process to improve the PSNR of the decoded frame.
This method, thanks to the multi-decoder structure, shows ro-
bust gain, good performance and is therefore employed in this
work as the fusion technique. However, the 3SI approach will
increase the complexity of LDPC decoding up to 6 times.

3. EXPERIMENTAL RESULTS

The system has been tested on the sequences “Breakdancers”
and “Ballet” from Microsoft Research [20], and “Dancer”
from Nokia Research [21]. We used the central view of the
three sequences, at 15 fps downsampled to CIF resolution.
The quantization matrices Qi = 1, 4, 7, 8 of the DISCOVER
[22] project are employed. The KFs are H.264/AVC Intra en-
coded using QP = 40, 37, 31, 29 and are matched with the
quantization matrices. We have tested the first 100 frames of
each sequence and reported the results for Group-Of-Pictures
(GOP) 2, 4, 8. The performance of the WZ frames has been
evaluated and compared with the single SI OBMC decoder.
In Tables 1-3 we list the Bjøntegaard differences [23] between
the single SI OBMC decoder and the 3SI decoder. The results
for lossless coded textures are listed as “QP = L”, while the
results using compressed textures, are listed with the QP used
for compression. Texture compression has been performed
with a standard H.264/AVC Intra coder1. In Figs. 1a-1c the
RD curves for GOP2 are reported. We have also reported
the performance of the single SI system and the performance
of DISCOVER. Only the performance for WZ frames is re-
ported. It has to be noted that the parameters of the 3SI de-
coder are the same for all the sequences and the quality level
of the textures.

In Section 2, the SI generation for GOP2 has been out-
lined. In the cases of GOP4 and GOP8 a hierarchical coding
structure [6] is used. First the SI for the central WZ frame is
generated using Ct−k, Ct+k, Dt−k, and Dt+k, where k cor-
responds to half of the GOP size. The decoded WZ frame
splits the GOP in two smaller GOPs in which the procedure
can be iterated until all the WZ frames have been decoded.

From the results presented, it can be seen that the OF
outperforms all the other single SI methods, showing also
high robustness against texture quantization, while the BB

1JM 18.1 Reference Software, available at iphome.hhi.de/
suehring/tml
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Fig. 1: RD curves, WZ frames only, GOP2.

method suffers at lower qualities of the texture frames. The
single SI OBMC-based decoder outperforms DISCOVER
[24] codec in all the studied conditions and for all the in-
vestigated sequences. The 3SI is able to correctly fuse the
three SIs, performing, on average, better or as well as the best
available SI for the particular RD point. The improvements
between the single SI OBMC decoder and the 3SI decoder
ranges from 1.50 to 4.95 dB and from 21.24% to 49.06% bit-

Sequence QP ∆PSNR ∆Rate
[dB] [%]

L 2.98 −46.46
Ballet 20 2.85 −44.99

30 2.40 −39.79
L 2.12 −34.02

Breakdancers 20 2.07 −33.28
30 1.87 −31.16
L 2.05 −42.90

Dancer 20 2.04 −40.41
30 1.82 −36.24

Table 1: Bjøntegaard Distances between OBMC and the pro-
posed methods, GOP2.

Sequence QP ∆PSNR ∆Rate
[dB] [%]

L 3.16 −44.71
Ballet 20 3.06 −43.32

30 2.57 −38.11
L 1.71 −23.87

Breakdancers 20 1.68 −23.52
30 1.50 −21.24
L 2.47 −42.54

Dancer 20 2.38 −42.03
30 2.00 −38.81

Table 2: Bjøntegaard Distances between OBMC and the pro-
posed methods, GOP4.

rate Bjøntegaard savings. Interestingly, the improvements for
GOP8, are higher in the case of compressed textures for the
Ballet and Breakdancers sequences (Table 3). A justification
can be found in the non-linear low-pass filtering nature of the
quantization, leading to more robust results, which in case of
complex motion can be of benefit.

4. CONCLUSION

In this work we addressed the problem of DVC-based depth-
map coding. We devised algorithms to produce higher qual-
ity SIs, employing the texture frames. We used two methods
in order to extract the motion information from the texture
frames: a block-based method and an optical flow-based one.
The optical flow achieved better performance and superior ro-
bustness to quantization of the textures compared with the
block-based system. The multi-hypothesis decoder proved
to be an effective and robust way to fuse the three generated
SIs outperforming the best single SI available. The improve-
ments between the single SI OBMC decoder and the multi-
hypothesis decoder ranges from 1.50 to 4.95 dB and from
21.24% to 49.06% Bjøntegaard bit-rate savings.

Sequence QP ∆PSNR ∆Rate
[dB] [%]

L 3.03 −42.80
Ballet 20 3.46 −46.62

30 2.98 −41.53
L 1.80 −23.95

Breakdancers 20 1.95 −25.55
30 1.76 −23.37
L 4.95 −49.06

Dancer 20 4.74 −47.61
30 4.43 −45.04

Table 3: Bjøntegaard Distances between OBMC and the pro-
posed methods, GOP8.
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