

FOREST HASHING: EXPEDITING LARGE SCALE IMAGE RETRIEVAL

Jonathan Springer
†
, Xin Xin

†
, Zhu Li

‡
, Jeremy Watt

†
, Aggelos Katsaggelos

†

†
Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL

‡
Multimedia Standards Research, Samsung Telecommunications America, Richardson, TX

ABSTRACT

This paper introduces a hybrid method for searching large

image datasets for approximate nearest neighbor items,

specifically SIFT descriptors. The basic idea behind our

method is to create a serial system that first partitions

approximate nearest neighbors using multiple kd-trees

before calling upon locally designed spectral hashing tables

for retrieval. This combination gives us the local

approximate nearest neighbor accuracy of kd-trees with the

computational efficiency of hashing techniques.

Experimental results show that our approach efficiently and

accurately outperforms previous methods designed to

achieve similar goals.

Index Terms— image retrieval, kd-tree, spectral

hashing, forest hashing.

1. INTRODUCTION

Efficiently finding similar images based on the content

within an image has been of interest to multiple research

communities for some time [4, 11]. Recently the Scale

Invariant Feature Transform (SIFT) was demonstrated to

effectively model image content for use as descriptors to

help locate similarities between images [8]. However,

SIFT descriptors leave users operating in a high-

dimensional space leaving efficient search through large

databases impractical. The Motion Pictures Experts Group

(MPEG) is interested in minimizing the size and memory

burden posed and are working towards a standard Compact

Descriptors for Visual Search (CDVS) [9, 15, 17]; an end

goal being an algorithm that can be executed on existing

mobile devices, efficiently and accurately.

Several machine learning or retrieval techniques have been

implemented and are thoroughly discussed in [4, 16, 18] to

help circumvent this issue. It has been proven that

approximate nearest neighbor (ANN) search works well for

this task [7], and since this requires no offline training it is

practical for many applications with continually expanding

databases. However as the database size grows the search

time increases significantly.

Bentley proved in [1] that binary tree structures known as

kd-trees are particularly useful for efficiently finding nearest

neighbors on a small scale. These trees are built by splitting

datasets using a hyper plane into two equal parts.

Depending on the user-defined height (ht) of the tree, this is

iterated creating 2
ht

 different leaves at the bottom of the tree.

Therefore if one were to choose a value for ht where 2
ht

 = N,

where N is the number of data points in the dataset, then

every single data point would end up in its own leaf.

Another method, hashing - a general procedure for indexing

and organizing a large quantity of data for convenient

retrieval using functions - has become attractive to

researchers as an alternative. There have been different

approaches as to which hashing function best minimizes the

distance between neighbor pairs [3, 12, 13, 14], but it seems

spectral hashing performs well. Spectral Hashing takes a

more holistic approach constructing hash functions based on

both the structure of the data and ideal hash properties. For

a formal review of spectral hashing, refer to Weiss et al

[13]. Generally after matches are establish a geometric

verification step is performed [4]. In this stage, location

information from the query and from database features is

used to confirm that the feature matches are consistent with

a change in viewpoint between matched images. In this

paper, we chose to focus on the improving the approximate

nearest neighbor matching rather than enhancing the

geometric verification step.

The rest of this paper is organized as follows. In Section II

we describe related word. In Section III we describe in

detail our method. In Section IV we discuss the experiments

we conducted and evaluate our method and compare it

against the current state of the art. Section V offers a

conclusion and discusses future direction.

2. RELATED WORK

Annotations are introduced in part to facilitate later

discussions. Dataset consists of data points { } ,

where . hash functions maps a data point to a

K bit hash code () () () () . In this

section, we review two widely used hashing methods,

1681978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

namely, Locality Sensitive Hashing (LSH) and Spectral

Hashing(SH).

2.1. Locality Sensitive Hashing

Locality Sensitive Hashing constructs hash tables using

the hash projections, . The k-th hash

function is in the form of:

 () (
)

where is a random hyper plane and is a random

threshold. With these hash functions, each data points are

projected to K bit hash codes. To perform query search, a

query point q is mapped to K hash codes and nearest

neighbors of the hash codes are retrieved from hash table. In

practice, because LSH suffers from severe redundancy of

the hash bits, K has to be sufficiently large to achieve

satisfactory precision. This leads to the big storage burden

of holding the hash tables and high computational cost of

projecting the query to the hash codes.

2.2 Spectral Hashing

Spectral hashing is brought in to learn hash functions

from input data by minimizing the following function:

 () ∑ () ()

 ∑ ()

∑ () ()

 () { }

The first two constraints give the following two good

properties. 1) The hash codes are efficient: each hash bit

partitions the data points into two balanced parts and 2) The

hash codes are compact: the bits of a hash code are

uncorrelated. Due to the constraints, SH is able to produce

better hash codes than LSH in practice. Besides, this

minimization problem can be converted to an eigenvalue

decomposition problem and easily solved.

3. FOREST HASHING

In this section, we present our scalable image retrieval

method, i.e. Forest Hashing (FH). Our method is so

named due to its combination of hashing techniques and the

use of multiple kd-trees. The basic idea behind FH is to

combine the accuracy of local nearest neighbor retrieval of

kd-trees with the efficiency of spectral hashing. A

visualization of this is show in Figure 1.

 In our implementation of FH, we start with some

large number N of SIFT descriptors, X = {xi}, i = 1, 2,,

N, xi R
D
, where generally D = 128 for the number of SIFT

features per descriptor. Before system development is

started, we find each descriptor’s global nearest neighbors

using a Euclidean distance measurement and save up

different percentages of them to be used to gather optimal

choices for precision and recall measurements found later.

3.1. Building multiple kd-trees

kd-trees were initially designed as space partitioning data

structures useful for nearest neighbor searches that partition

subspaces linearly [1], however, kd-trees vastly fail in high

dimensional spaces. Our motivation for utilizing multiple

trees was to incorporate information from different

dimensions of the dataset in an efficient manner.

To make the tree structure more manageable we initially

reduce the N descriptors using principal component analysis

(PCA) on the dataset to lower its dimension considerably

down to some small number L (e.g. L = 12) [2]. Next, we

build multiple trees (up to four for our purposes) from

organized subsets of the L-dimensioned data as follows:

Treedim(t) = Ldim{ t : [L - (T - 1)] + t - 1}

where t is the t
th

 set of dimensions in the build Trees and T

is the total overall number of trees to build. This ensures

that as long as L > T, that is the number of dimensions in the

PCA reduced data is greater than the total number of trees

being built, that individual trees will be constructed with at

least 50% of the same dimensions, but never the exact same

dimensions. We believe that building trees with different

subsets of dimensions and utilizing these trees to find

similar descriptors will give a higher number of accurate

results in retrieval and will avoid a common pitfall of kd-

trees - being they find local, not global approximate nearest

neighbors.

Our experiments were all performed on kd-trees with a fixed

height of ht = 8. It is a future intention to vary the height

of trees to gather performance metrics.

3.2. Spectral Hashing

Figure 1 - Forest Hashing System

1682

As mentioned earlier, hashing functions exceed at efficiently

finding information in large sets, and lately are becoming

more accurate as well [13]. Our motivation for incorporating

a hashing method into our design, was to further improve

the efficiency of the local approximate nearest neighbor

search in each individual leaf while also creating a more

effective method of parsing the global results for neighbors.

After the desired number, T, of kd-trees are built, local

spectral hashing functions are built for each leaf; this step is

the memory overhead for our method and simply consists of

storing a matrix of size:

N/2
ht

 x T - 16 bit hashing codes

Which for N = 1,000,000, ht = 8, and T = 4 gives us roughly

30kB. As long as the quotient of the first term (N/2
ht

) does

not exceed 65536 one can use 16 bit hash codes. These

local hashing functions ensure that the subspace within each

leaf is properly partitioned to group true neighbors and non-

neighbors.

3.3. Retrieving Similar Descriptors

After the multiple trees and hashing tables have been

constructed, we parse these structures to find similar

descriptors. Given an input query to the system, the T kd-

trees are searched to find in which leaf this new query

would be placed. Once these T leaves are found (one in

each tree), a hashing function is used to construct T hash

codes for the input query to compare against the other hash

codes within each corresponding leaf. Since these are all

multi-bit representations of the data, a simple hamming

distance measure is used to compare to find most similar

descriptors [10]. An illustration using 2 kd-trees is shown

in the in Figure 3.

What we have done is drastically reduced the calculation

time of a distance comparison for two points. Assuming L

= 12 dimensions after PCA, a comparison would have

required comparing 12 different doubles (typically 64 bits

each). Using spectral hashing allows us to make this

comparison using 16 bits total per query; roughly 48 times

quicker.

4. EXPERIMENTS

4.1. Datasets

In this paper, two datasets are used in the experiments. 1

million 128-dimensional SIFT descriptors are extracted

from random images [12]. From the SIFT dataset, we select

10K SIFT points as test points in a fashion to make these

pints uniformly distributed among kd-tree leaves. The

ground truth neighbors of a query are obtained by the brute

force search and a data point is regarded as a true neighbor

if it lies within 0.03 percent points closest to the query. In

this case, a query point usually has 300 neighbors.

4.2. ANN Recall Rate with KD-Tree

In order to test our method we ran multiple retrieval

algorithms on the same dataset and gathered measurements.

In all of our experiments we tested 10% of the entire dataset

(100,000 SIFT descriptors) that were incorporated in the

trained dataset of 1,000,000 descriptors.

First we tested the recall rate of a system designed to only

use multiple kd-trees and not perform spectral hashing.

Figure 3 - Hamming Distance Calculation

on Locally Hashed Leaves
Figure 2 - Recall Rate using Multiple KD-Trees

1683

The graphic in Figure 2 shows histograms of recall rates

when using 1 - 4 kd-trees; one can clearly see recall rates

increasing as the number of trees is increased.

4.3. Comparison with Single Basis Hashing

When running our Forest Hashing algorithm, we chose only

a few variables as parameters: T, the total number of trees to

build, and R, the percentage of the ground truth calculated

global nearest neighbors in which to compare our retrieved

results. As can be seen from the below tables, we varied T

from 1 - 4 and R from 0.1 to 0.8 find optimal recall rates

given computation and time constraints.

5. CONCLUSION

In this paper we have presented a method known as Forest

Hashing to improve accuracy and diminish computation

time for image retrieval systems using a hybrid method

involving multiple kd-trees and spectral hashing. Our

system’s performance demonstrates the advantages of using

more than one kd-tree built on a variation of different

dimensions from a SIFT descriptor. Our implementation

of spectral hashing suggests performance improvements on

the order of (64 x L/M), where L is the number of

dimensions in your data and M is the number of bits

assigned to each descriptor’s hash code.

Experimental results showed a slight increase in recall rates

using Forest Hashing as the number of trees increased.

However, precision rates dropped slightly. One possibility

is that adding trees is actually adding more false positives at

corresponding hamming distances than true positives giving

a drop in performance. Further investigation is required to

verify this reason for this.

Our intention is to expand on these experiments to find a

true optimal number of various parameters including:

number of descriptor dimensions, number of kd-trees used,

and number of bits assigned to hash codes. Furthermore,

comparisons of various hashing techniques (e.g.

Complementary Hashing) with Spectral Hashing may give

an improvement in performance. Source code and

demonstrations will be made available at [5].

6. REFERENCES

[1] L. Bentley, “Multidimensional binary search trees used for

associative searching,” Communications of the ACM, 18(9):509-

517, 1975.

[2] Duda, Richard O., Peter E. Hart, and David G. Stork. "Pattern

Classification and Scene Analysis 2nd ed." (1995).

[3] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high

dimensions via hashing,” Proceedings of the International

Conference on Very Large Data Bases, pages 518-529, 1999.

[4] B. Girod, V. Chandrasekhar, D.M. Chen, Ngai-Man Cheung, R.

Grzeszczuk, Y. Reznik, G. Takacs, S.S. Tsai,R. Vedantham,

"Mobile Visual Search," Signal Processing Magazine, IEEE ,

vol.28, no.4, pp.61-76, July 2011.

[5] Image And Video Processing Laboratory Home Page. (2007).

Retrieved November 15, 2012 from <http://
http://ivpl.eecs.northwestern.edu/>

[6] H. Jegou, M. Douze, and C. Schmid, “Product quantization for

nearest neighbor search,” IEEE Trans. Pattern Anal. Machine

Intell., 2010.

[7] Y. Jia; J. Wang; G. Zeng; H. Zha; X. Hua; , "Optimizing kd-

trees for scalable visual descriptor indexing," Computer Vision and

Pattern Recognition (CVPR), 2010 IEEE Conference on, vol., no.,

pp.3392-3399, 13-18 June 2010.

[8] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision, 60(2):91–

110, 2004.

[9] MPEG CDVS website <http://wg11.sc29.org/visual-search/>

[10] J. G. Proakis, Digital Communications, 5 ed. New York:

McGrawHill, 2007.

[11] G. Schroth, R. Huitl, D. Chen, M. Abu-Alqumsan, A. Al-

Nuaimi, E. Steinbach, "Mobile Visual Location Recognition,"

Signal Processing Magazine, IEEE , vol.28, no.4, pp.77-89, July

2011.

[12] J. Wang, S. Kumar, and S.F. Chang, “Semi-Supervised

Hashing for Scalable Image Retrieval,” Proc. IEEE Conf.

Computer Vision and Pattern Recognition, 2010.

[13] Y. Weiss, A. Torralba, and R. Fergus, “Spectral Hashing,”

Proc.Advances in Neural Information Processing Systems 2008.

[14] Xu, H., Wang, J., Li, Z., Zeng, G., Li, S., Yu, N.:

“Complementary hashing for approximate nearest neighbor

search,” International Conference on Computer Vision. (2011)

1631

[15] Xin Xin, Zhu Li, Aggelos K. Katsaggelos. "Laplacian

embedding and key points topology verification for large scale

mobile visual identification". Signal Processing: Image

Communication, Available online 4 February 2013, ISSN 0923-

5965, 10.1016/j.image.2012.11.003.

[16] Tzu-Jui Liu, Hye Jung Han, Xin Xin, Zhu Li, Aggelos K

Katsaggelos "A ROBUST AND LIGHTWEIGHT FEATURE

SYSTEM FOR VIDEO FINGERPRINTING". Eusipco 2012

[17] Xin Xin, Aggelos K Katsaggelos. "A novel image retrieval

framework exploring inter cluster distance". ICIP 2010.

[18] Xin Xin, Zhu Li, Aggelos K Katsaggelos. "LAPLACIAN

SIFT IN VISUAL SEARCH "

http://www.mirlab.org/conference_papers/International_Conferenc

e/ICASSP%202012/pdfs/0000957.pdf

1684

