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ABSTRACT
The state of the art in query expansion is mainly based on
the spatial information. These methods achieve high perfor-
mance, however, suffer from huge computation and memory.

The objective of this paper is to perform visual reranking
in near-real time regardless of the spatial information. We ex-
plore a graph-based method proposed by [1] as our confident
sample detection baseline, which has been proved successful
in achieving high precision. In addition, a novel maximum-
kernel-based metric function is introduced to rerank the im-
ages in the initial result.

We evaluated the method on the standard Paris dataset and
a new Francelandmark dataset. Our experiments demonstrate
that the algorithm has great value on practicality because of
its good performance, easy implementation, and high compu-
tational efficiency.

Index Terms— Query Expansion, Reciprocal Neighbor,
Confident Sample, Maximum-kernel-based

1. INTRODUCTION

With the development of Internet and computer technology,
the content-based visual retrieval has been researched over
several years. Many works have constructed the standard
framework [2, 3, 4]: each image is represented using bag-
of-word (BoW), and images are sorted using term frequency-
inverse document frequency (tf-idf) computed efficiently via
an inverted index.

Unfortunately, the traditional content-based search fails
to perform perfectly. There are several factors accounting for
it: inappropriate metrics for descriptor comparison; noisy de-
scriptors; feature detection drop-out; or loss due to descriptor
quantization [5]. To address these problems, query expansion
is introduced to the visual reranking.

Query expansion, originated from the text retrieval lit-
erature, has received attention in the computer vision over
the past years [6]. Given an initial ranking list and its cor-
responding set of visual feature R = [r1, r2, · · · , rM ] and
f = [f1, f2, · · · , fM ] respectively, where M is the number

Fig. 1. Image graph. The images related with the same object
are connected to a subgraph.

of the candidates, the high-ranking images from the original
query are reused as the requery. which can be described as
follows:

q′ = g(q,R, f)

where q is the original query and q′ is a set of requery.

R′ = h(q′, q, f)

where R′ is the reranked result.
Depending too much on the initial list is the principal lim-

itations of the query expansion, because a form of blind rele-
vance feedback may fail if false-positive images are included
in q′. Many works [4, 7, 8, 9] have made contribution to the
query expansion. [6] proposes that strong spatial constraints
between the query image and each result allow accurately ver-
ifying each return, such as RANSAC.

However, these methods often suffer from huge compu-
tation and memory. It is not practical in the near-real time
search. Feature augmentation is another natural complement
to the query expansion. The database-side feature augmen-
tation is proposed that images in the database are augmented
offline with spatially verified visual words [5]. On the other
hand, [10] introduces k-nearest neighbors(k-NN) of query for
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automatically refining the initial list, which meet state-of-the-
art retrieval performance on the several public databases.

Inspired by the spirit of image augmentation and k-NN,
our approach explores graph-based method to rerank the ini-
tial list. It includes two parts: offline indexing reciprocal
neighbors, and online reranking the initial list.

The rest of this paper is organized as follows. Section
2 describes our system including offline indexing and online
reranking. Experiments are conducted to demonstrate the ef-
fectiveness and efficiency of the algorithm in Section 3. Sec-
tion 4 concludes and proposes the future work.

2. GRAPH-BASED RERANK

2.1. Offline Indexing

The framework of offline indexing is shown in Fig. 2.

Fig. 2. Framework of offline indexing. Image a and image
b belong to their respective k nearest neighbors(indicated in
the red box and the green box), so they meet the condition of
reciprocal neighbors. Only the images which are reciprocal
neighbors images are kept.

For the dataset, assumed that the images containing the
same view of the object are connected, each image in the
dataset would seek the latent connected candidates based on
the reciprocal neighbors relation. As discused in [11, 12], the
reciprocal neighbor relation is defined as:

Rk(i, i
′) = i ∈ Nk(i

′) ∧ i′ ∈ Nk(i) (1)

where Nk(i) is the set of the k nearest neighbors of image i.
The reciprocal neighbor is a reliable guarantee to evaluate the
visual similarity between two images. We use the reciprocal-
neighbor graph G = (V,E,W ), where V is the set of the
images, E is the set of edges connecting images, and W is
defined as

w(i, i′) =

{
Nk(i)∩Nk(i

′)
k if(i, i′) ∈ Rk(i, i

′)
0 otherwise

(2)

2.2. Online Reranking

The online reranking consists of two steps: The first step is
to find the confident images which contribute to the query ex-
pansion, and the second step is to rerank the images by using
the detected samples. The framework is shown in Fig. 3.

Fig. 3. Framework of online searching. After the confiden-
t sample detection and kernel reranking, the irrelevant im-
age(indicated in the red box) is filtered out.

2.2.1. Confident Sample Detection

The confident sample detection is based on the graph-based
ranking. More concretely, we follow the architecture of the
previous work [1] for a baseline retrieval system, which has
been proven successful in the high precision. The objective is
to search for a subgraph G′ from G maintaining the maximum
density in Eqn. 3. Then, the initial list is reranked according
to the time of insertion into subgraph G′.

G′ = argmax
G′=(V ′,E′,W )⊂G:q∈V ′

∑
(i,i′)∈E′ w(i, i′)

|V ′|
(3)

For certain queries, the principal limitation of the method
is that it could not ensure high recall if few reciprocal neigh-
bors can be found and built. Even so, the graph-based method
can be used to detect the confident samples, because the con-
fident samples must maintain high precision. The subgraph
starts with query and most confident samples are inserted into
the subgraph successively. An approximate solution is adopt-
ed to solve the Eqn. 3 as Algorithm 1.

2.2.2. Kernel-Based Reranking

So far, the confident samples are detected. A simple and novel
kernel-based metric function is introduced to rerank the im-
ages in the initial list.

Maximum-kernel-based expansion. Because the simi-
larities between the relevant images are generally higher than
those of the irrelevant images, the relevant images receive
higher supports from the confident samples while the irrele-
vant images receive lower supports [13]. In addition, the rank
in the confident sample reflects the relevance level against the
query. Therefore, it could reduce the impact from false pos-
itive images by weighting the confident images. Considering
the convention that the image with smaller metric would rank
higher, we formalize the metric function as follows.

si = min

{
βrn
∥fi − fn∥22

σ2
n

| n = 1, 2, .., Nc

}
(4)
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Algorithm 1: Confident sample detection

Input:
q, database D = {i1, i2, · · · , iM}, parameter k, Nc

Initialization:
confident nodes I = {q}, edge nodes E = {∅},
reciprocal neighbor R = {r ∈ D | Rk(q, r)},
outer nodes O = {D \R}, Nt = 1
while Nt ≤ Nc do

E ← {E ∪R}

e = argmax
e∈E

∑
i∈I

w(i, e)αmax(ri,re)

where α is a constant ranging from 0.5 to 0.8, and
ri(re) is the initial ranking of i(e).
I ← {I ∪ {e}}
E ← {E \ {e}}
R← {r ∈ O | Rk(e, r)}
O ← {O \R}
Nt ++

end
Output: I

where rn and fn is the order and the feature vector of the nth
images in the confident samples, β is set as 0.99, and σ2 is set
as

σ2
n =

M∑
m=1

∥fn − fm∥22

2.3. Complexity and Scalability

We analyze the complexity and scalability of our graph-based
reranking algorithm. In the offline indexing, the time com-
plexity of reciprocal-neighbor graph is O(M2), where M is
the size of the database. In the online reranking, if Nc confi-
dent samples are detected, the complexity ranges from O(Nc)
to O(k lgNc), and the running time is about 1 second in the
experiment. The number of reciprocal-neighbors determines
the memory consumption. After the confident samples are
found, the kernel-based reranking takes O(LNc) to re-score
the images in the initial list where L is the length of the initial
list.

3. EXPERIMENTS

3.1. Dataset

To evaluate our system, experiment are conducted on the two
databases - only the Paris database, and the Paris + France-
landmark. Francelandmark includes some images crawled
from Flickr, Bing and Google using queries of famous 78
France landmarks and 24 artworks.

The Paris [14] includes 6,391 images collected from
Flickr by searching for particular Paris landmarks. There are
55 images extracted from dataset as the query. The retrieval
performance is measured by mAP(mean Average Precision).
In addition, the precision at top n (p@n) is also selected as the
evaluation of users experience, since users often only concern
about the first screen of retrieval results.

The Francelandmark contains 86,717 images in total,
which gets closer to the authentic application. The perfor-
mance is evaluated by the precision at top n candidates. We
choose two groups of queries to simulate the real conditions:

• Low Precision (LP): 25 queries where the the precision
at top 25 candidates is lower than 30%.

• High Precision (HP): 25 queries where the the precision
at top 25 candidates is high than 70%.

Fig. 4. A random samples from the Francelandmark dataset

3.2. Methods

As for the visual features, we choose the Harris Laplace de-
tector and SIFT as the descriptor. Then, a random collection
of 40M descriptors are sampled to learn a 1M codebook with
Approximate K-means(AKM). Each image is represented by
the BoW vector. Several different query expansion methods
are compared as follows.

Query Expansion Baseline(QEB). This method assumes
the top N candidates to be confident and averages the similar-
ities computed from the entire result image and requery. The
N is tuned as 20 to achieve the best performance.

Maximizing Weighted Density(MWD). This method[1]
reranks the images according to their time of insertion into
subgraph while maximizing weighted density.

Maximum-Kernel-based Expansion(MKE). Confident
samples are detected based on the Algorithm 1 and then the
Eqn. 4 is performed.

GroundTruth-based Expansion(GTE). The method
picks parts of relevant images from the groundtruth to enable
controlled construction of expanding queries. The N is set as
160 in which the MKE performs best.
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3.3. Evaluation

Table 1 shows that for the Paris dataset, the performance of
all methods are better against the initial rank.

Table 1. The mAP (in %) on the Paris dataset
INIT QEB MWD MKE GTE
56.38 63.19 70.52 72.87 82.61

As for QEB, if the top N candidates for each query hap-
pened to be correct, the refined list would be better than initial
list. However, in fact this can be dangerous because the high-
ranking images may include the noise. MWD performs sig-
nificantly better than blindly choosing high-ranking images
for expansion. One of the strengths is its efficiency to got high
precision in returning the augmenting images as Fig. 6. This
method improves in a limited range since it may be unable
to find sufficient reciprocal neighbors for some query. GTE
could be regarded as the upper bound of query expansion.
When the re-query are sufficient and correct, the performance
could reach up to 82.61%.
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Fig. 5. The mAP curves of MKE in terms of the parameter
k (left) and Nc (right) on the Paris.

Our method(MKE) improves on the MWD, by adding
new constrains and kernel-based metric function. The pa-
rameter k and Nc have great influence on the performance.
The size of k concerns the strict degree about choosing the
reciprocal neighbors. If the reciprocal neighbors are selected
too rigorously, the image and its reciprocal neighbors look
pretty much the same so as to lose the augmentability. But
also, oversize k would render introducing noisy neighbors.
In terms of Nc, its role is similar with k, and the difference
is that Nc is related to sufficiency and precision of the con-
fident samples. As the Fig. 5 illustrates, the mAP is highest
by up to 72.87% when the k and Nc are set as 20 and 160,
respectively.

Fig. 7 shows the MKE generously outperforms other
methods in the both groups. Even though it is difficult to
rank only using visual features in the low precision group,
the result could be improved by augmenting the query-related
images. In addition, our method is unsupervised and needs

not to train the classifier in advance. Therefore, it is suitable
for the real-time visual retrieval.
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Fig. 6. Comparison of p@n(precision at top n) on the Paris
dataset.

Fig. 7. Comparison of p@n(precision at top n) on the France-
landmark.

4. CONCLUSION

In this paper, a graph-based query expansion is presented
which is suitable for the real-world application. The method
absorbs the strength of [1] that achieves high precision, and
combines with the kernel-based function to offset its low
recall. From the experiment result, we could conclude that
this method is efficient in the visual reranking. The sec-
ond contribution is that we present a new public dataset
Francelandmark which would facilitate the real-world visual
reranking. In the future, we will try to turn spatial verification
into graph-based problem so that the graph theory could be
introduced to solve it.
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