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ABSTRACT

Image search reranking has become a widely-used approach
to significantly boost retrieval performance in the state-of-art
content-based image retrieval system. Most of the methods
merely rely on matching visual distances between query and
initial results or among initial results to detect confident sam-
ples relevant to query. However, they may fail to rerank due to
the existence of a huge gap between low-level visual features
and high-level semantic concepts.

In this paper, we propose to detect reliable relevant sam-
ples based on a semantic image graph of labeled auxiliary
dataset and Markov random walk algorithm. A graph-based
rerank method is then presented to propagate the scores of de-
tected confident samples to the rest. Our method is evaluated
on the standard Paris dataset and a France dataset introduced
by us. The performance is demonstrated to match or exceed
the state-of-art.

Index Terms— Image search reranking, semantic graph,
random walks

1. INTRODUCTION

Image retrieval and reranking have been one of attractive
and challenging researches in the recent multimedia areas.
Prevalent engineers of content-based image retrieval (such as
Google Goggles) provide results relying on matching visual
features of a query image to dataset. However, a large pro-
portion of the initial search results is not relevant to the query
image because a huge semantic gap exists between low-level
visual features and high-level semantic concepts.

In order to offer a better user experience, the initial search-
ing results should be reordered to improve the retrieval per-
formance. The basic principle is to detect confident sam-
ples, considered as pseudo-positive samples, which will help
rerank the rest of images. In the early work, top ranked im-
ages are directly taken as pseudo-positive samples to take part
in the following rerank process [1, 2, 3]. However, these
methods may not improve the performance or even worse it
because false-positive samples always exist in the top list.

1666

Fig. 1. (a) query image of Invalides in Paris. (b) The ini-
tial ranking results where green rectangular tags inliers and
red for outliers. The second and the forth are Pantheon and
Sacrecoeur in Pairs respectively. (c) Results after reranking.

In the recent researches, more reliable confident samples
are learned to select instead of simple top N images of the
initial list. One kind of reranking techniques tries to construct
a new query from confident samples selected by robust spa-
tial verification[4, 5, 6]. [4] uses a RANSAC-like geometric
verification to remove false-positive samples and averages top
confident samples to form a new query. In [5] min-hash is ap-
plied to detect noises in query images while [6] also learns
models of noise features. The query region filtered out noises
is taken as a new query to retrieval. The principle restriction
of these methods is that they depend significantly on geomet-
ric verification, whose failure will lead to a collapse of query
expansions. Another kind of reranking method selects pseu-
do positive samples based on the mutual visual relationships
among top images in the initial ranking list [7, 8, 9]. De-
pending on the observation that outliers are less popular and
more visually distinct than inliers, [8] introduces sparsity and
ranking constraints to discover confident samples and reranks
with kernel-based scheme. However, these methods may fail
when the irrelevant images are uneasily distinguished from
the relevant images visually.

An example is shown in Fig. 1 where irrelevant samples
in the initial top ranking list have high visual similarity to the
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query, as well as relevant samples. In this case the previous
methods may not work because they merely rely on compar-
ing the low-level visual features distance to detect confident
samples.

However, we observe that even though the visual dis-
tances between inliers and outliers are close, their tags or
high-level concepts are obviously distinct, such as Invalides
and Sacrecoeur. Inspired by [10] in which a semantic man-
ifold is embedded to measure the image distance, we intend
to merge semantic information to pick out the semantically
relevant images and push down those semantically irrelevant.

In this paper, we propose to establish a semantic graph for
auxiliary dataset of images, where every vertex is a labeled
image and an edge links a pair of images who are semantical-
ly close. In [10] a semantic graph is established on ImageNet
[11] dataset organized in a tree structure. Instead we treat
each class independently due to the independence of concept-
s in our test dataset. Then top m initial results are utilized
to select confident samples by a Markov random walk [12]
inside the semantic graph. Finally, the rest of images are r-
eranked based on the same graph where scores of detected
confident samples are propagated. The performance of our
algorithm is evaluated on standard Paris dataset, and France
landmark dataset [13] which is crawled from Flickr, Bing and
Google using queries of famous 78 France landmarks and 24
artworks in Louvre Museum.

The rest of this paper is organized as follows. Section
2 describes the process of building the semantic graph, de-
tecting confident samples and reranking the rest relying on
Markov random walk. In section 3 the performance of our
algorithm is evaluated and compared with the state-of-art.

2. RERANKING

Our approach consists of two stages: off-line stage during
which a semantic graph is built with labeled auxiliary data,
and on-line stage in which confident samples are selected and
reranking is applied.

We first define notations used in this paper. Let auxil-
iary dataset be D = {(x1,%1), -, (Xn,yn)} of N images,
where x,, is the low-level visual feature and y,, is the class
label of image I,,. A weighted semantic graph is denoted by
G = (V, E,w), where V is the set of vertices and F is the set
of edges with a weight function w : £ — R, . The matrix of
graph G is defined as W € RY*N | where w;; represents a
weight associated to edge (i,j) € E. In addition, h* € RY
is defined as an initial ranking vector, where A} is non-zero
if I; belongs to initial ranking images set H or 0 otherwise.
Similarly, we denote h € RY as a confident samples vector,
where the element is non-zero if its corresponding image is a
confident sample. Let f be a function of detecting confident
samples as:

h = f(b", W) (1
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Then the scores of detected reliable samples are propagated
to rerank the rest images, giving the function

where u € RV is a reranking vector and wu; is the score of
image ;.

2.1. Semantic Graph Building

The aim of building a graph is to connect the images which
are visually as well as semantically related. Each vertex of G
is a labeled image [ in the auxiliary dataset, while each edge
connects two of them undirectedly. A weight is assigned to
each edge to reflect the similarity between the two vertices.
Throughout the paper we may refer to the elements of V' as
the corresponding images.

Instead of linking every two vertices, we only connect one
vertex to its k closest neighbors within the same class, which
results in a sparse graph. For each vertex i, K (i) is defined
as a set of its k nearest neighbors whose class labels y equal
to y;. It is worth noting that the k closest neighbors include
the target itself, representing self-transition. The similarity
between V; and V; is computed through L1 distance between
low-level visual features as:

_ 1
L+ [|xi — %51

Sij 3)
The edge weights are normalized starting from one node to its
k connected neighbors so that rows of the graph matrix sum
to 1. Therefore w;; is defined as:

Sij e .
if j € K(i)
Wi = Z" Sin (4)
0 otherwise

In this way, each vertex is linked with those which share
a high visual and semantic similarity. On the one hand, we
only find the neighbors of the target node in its own class,
which enables a semantic filtering and exploits a semantic co-
herence. On the other hand, for images that are highly close
in semantic, visual feature distance guarantees a reliable mea-
sure for similarity.

2.2. Confident Samples Detection

The fundamental idea of this confident samples detection ap-
proach is that given a probable initial vertices distribution of
a query, a final nodes distribution is found after a Markov ran-
dom walking [12] inside the semantic graph.

Specifically, for a query image I,;, we firstly select top m
similar images from the auxiliary dataset as candidate nodes
set Vp«. The similarity measure for initial ranking result re-
lies on visual distance, so that an initial ranking vector h* is



defined as:
Sqi

ifn € Vi«
Zn Sqn (5)

0 otherwise

*
hi =

In order to find out nodes that are semantically close to the
majority of V-, Markov random walk is applied to pick out
relevant nodes in dataset and suppress noises in V,«. Accord-
ing to [12], for an edge (i, j) one step transition probability
from node 7 at time ¢ to node j at time ¢ + 1 is

w4 e E
Py () —{ ! (6.4)

0 otherwise

(6

The graph matrix W can be considered as Markov transition
matrix. Since W has been normalized in terms of row, the
probabilities of starting from vertex ¢ to other vertices sum to
one. Remembering that the k£ nearest neighbors include target
vertex itself, we add self-transitions to the vertex so that w;;
is neither zero nor one.

Now given an initial vertices distribution h* and a transi-
tion matrix W, the reached vertices probability distribution h
after one step of random walk is:

hT = h*TwW 7

We observe that relevant samples are more semantically ag-
gregated in the top ranking list while classes that irrelevant
samples belong to are usually more diverse. Due to this ob-
servation, the connected and nearby nodes will enhance each
other and the disperse nodes will be suppressed through ran-
dom walk.

After one step of random walk, new weights stored in h
are assigned to each vertex ¢ € V/, which are then sorted in a
descending order. Intuitively top ranking nodes are more re-
liable than bottoms, therefore an adaptive threshold 7" is cal-
culated to discard the bottom nodes as follows:
_ 1- Zh,;>a hi
N n

T (8)

where n is the number of vertices whose weights are less than
a. If h; is less than 7', the corresponding vertex V; is discard-
ed, i.e. h; = 0. It means that when the probabilities mainly
distribute on the nodes with weights larger than ¢, the node
whose probability is even less than the average distribution of
the left nodes will be considered less reliable.

One run of a random walk is insufficient to recall enough
confident samples. Therefore, the updated h is normalized
again, considered as the positive feedback for the next ran-
dom walk inside the semantic graph. The process is repeated
r times so that more confident samples are selected and at
the same time the order of them are reranked, illustrated in
Algorithm 1.

In this way, images which are visually as well as seman-
tically similar to the majority of the initial ranking list are
selected as confident samples, and noises that have either di-
verse visual features or different class labels are removed.
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Algorithm 1: Confident samples detection

input : initial ranking vector h*, graph
G = (V, E, w), random walk times r
output: confident samples vector h

1:=0

while i < r do
hT = h*TwW
sort h

calculate T'

if h; < T then
L hl‘ =0

normalize h

h*:=h

=441

2.3. Graph-based Reranking

The high-level idea of our reranking approach is to close the
rank of two images whose path in our semantic graph is short.
In terms of ranking vector this means that two similar images
will have close weights.

Based on this intuition, we make use of the the confident
vertices set V}, to solve the following objective function as:

h®*! = arg min Z (Rt — h§)2wij
h ek 9)
subject to Wit = hlifi € Vi, t =1,2,...,1

which is a convex optimization problem. Specifically, at time
t the two vertices with higher similarity are forced to have
similar weight at time £+ 1 to minimize the whole costs. Also,
the constraint ensures that ranking vector will keep the weight
of confident vertices. After each step V}, is updated. The
process will be repeated [ times and the final reranking vector
u=h'

This problem could be solved by a simple system of linear
equations based on random walk in [14]. Note that [14] re-
quires the Laplacian matrix of G must be nonsingular. Since
every vertex in our semantic graph connects to other & — 1
labeled images, the Laplacian matrix of G is nonsingular.

3. EXPERIMENTS

3.1. Experiment Setup

The performance of our approaches is evaluated on the stan-
dard Paris[13] dataset. Since it is relatively small including
6414 images of 11 landmarks, we establish a larger dataset
called France. This dataset is crawled from Bing, Flickr and
Google using queries for famous 78 France landmarks and
24 artworks in Louvre Museum, such as Amphi Theater and
Mona Lisa, including 102 classes of 86717 images shown in



Fig. 2. Randomly selected images from the France dataset

Fig. 2. We also select the same 55 queries of Paris dataset
as the queries of France dataset. As for low-level visual fea-
tures, Harris-Laplace detectors [15] and SIFT descriptors [16]
are used to describe the local visual information. Images are
represented as bag of words with standard tf-idf scheme. We
apply vocabulary tree [17] to train a vocabulary of 106 visual
words. In the experiments, the following parameters are used:
number of connected vertices for each target node k£ = 10,
number of top nodes initially selected for confident samples
detection m = 10, and v = 0.01 .

Besides, we use Average Precision to evaluate the perfor-
mance of each query which is the area under the precision-
recall curve. A mean AP (mAP) is calculated by averaging
APs of all queries to assess a dataset.

3.2. Graph Construction and Parameters Selection

Firstly, for Paris dataset we simply use the standard offered
tags of images to build the semantic graph, while for France
dataset images are downloaded with tags.

Parameter variation: We compare the performance of
different r and [. The mAP is calculated with different r by
setting [ a constant, as shown in Fig. 3. The performance is
relatively high when 7 falls between 19 and 24. In the follow-
ing experiment shown in Fig. 4, we set = 20 and vary [. The
mAP tends to be steady when 7 is greater than 12. Therefore
we select 7 = 20 and [ = 14 and the mAP reaches 0.786 and
0.723 on Paris and France dataset respectively.

Graph Re-construction: Although the mAP for Paris
dataset is relatively high (0.786) when tested on the previous
semantic graph, a few queries including Eiffel-3 and Trimphe-
5 fail. One reason for the failure is that a class called Gener-
al contains images with various tags belonging to different
landmarks, however, we take it as an independent class when
building our graph. Another reason is that there is some mis-
labeled images, such as Trimphe-5 image labeled as Defense.
Therefore, we relabeled the images in class General and build
a new semantic graph. The mAP is improved to 0.826.

3.3. Performance Comparison

We compare our approach with the state-of-art reranking al-
gorithms running on the Paris dataset.

a. Top N reranking: a baseline where top N images are
selected as confident samples and relation graph is built only
based on visual similarity.
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Fig. 3. Selection of r on Paris and France dataset. [ = 6.

r Paris | France
1 |0.697 | 0.527
3 10.706 | 0.560
6 | 0.715 | 0.590
9 | 0.727 | 0.615
< 065 ° 12 | 0.743 0.631
: 15 | 0.748 | 0.655
06 18 | 0.750 | 0.662
21 | 0.753 | 0.680
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o France 27 | 0.747 | 0.677
0% 5 10 15 20 25 30 35 30 | 0.747 0.670
' 33| 0.744 | 0.668

(a) (b)

l Paris | France
1 | 0589 | 0.238
5 10742 | 0.622
10 | 0.782 | 0.710
0s e 12| 0.784 | 0.719
0z, : - o 14 | 0.786 | 0.723
I 15 | 0.786 | 0.724
(@) (b)

Fig. 4. Selection of / on Paris and France dataset. » = 20.

b. K-reciprocal Nearest Neighbors (KRNN): proposed
by D.Qin et al. [18] where different similarity measures are
used for different parts of initial ranking list.

c. Total recall II (TR II): proposed by O.Chum et al.
[6] where the confident samples are selected through confuser
filtering and then applied to incremental spatial reranking.

The retrieval performance of each algorithm on Paris
dataset is displayed in Table 1. It shows that our approach
have reached the state-of-the-art results, outperforming the
KRNN and TR II 2.3% and 2.1% respectively on their best
results in previous publication.

Table 1. Performance Comparison on Paris Dataset

method | TopN KRNN TRII Ours
mAP | 0.612 0.803 0.805 0.826
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