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ABSTRACT
Sparse coding is an active research topic in machine learn-
ing and signal processing community. In this paper, we pro-
pose a novel local sparse model for multi-label image anno-
tation. Existing feature descriptors and extraction algorithms
pay less attention to semantic information and extracted fea-
ture dimension usually is high, which leads to heavy compu-
tation. Noise and redundant information often reduce the per-
formance of sparse model. To address these issues, we com-
bine label and visual information for feature selection while
most previous work only utilizes labels and ignores visual in-
formation itself. First of all, we make use of label sets to
seek images neighbor relations and generate the Gaussian k-
ernel matrix over these neighbor images, then use LLP (Local
Learning Projection) algorithm to get minimal local estima-
tion error. After that, for each query image, we find its K n-
earest neighbors in the transformed space and use these neigh-
bors to reconstruct it via sparse coding. Moreover, during
coding, we penalize the corresponding reconstruction coef-
ficients to implicitly reflect the neighbor relations. Finally,
propagating tags from training data to test data. Image an-
notation experiments on the Corel5k dataset show the perfor-
mance of our approach is comparable to several state-of-the-
art algorithms.

Index Terms— image annotation, feature selection, KN-
N, local, sparse coding

1. INTRODUCTION

Automatic image annotation is a hot research topic in com-
puter vision community. The goal of image annotation is to
assign a few relevant text keywords to the given input images
which reflect their visual content. It’s a typical multi-label
learning problem in nature, where each image contains mul-
tiple objects and therefore be associated with a set of labels.

Image annotation is a difficult task since the well-known
semantic gap problem. Furthermore, the lack of correspon-
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dence between the labels and image visual words makes the
task more complex. The image annotation problem has been
studied for more than a decade. The popular algorithms can
be roughly categorized into three scenarios: classification-
based method, probabilistic modeling-based method and
nearest neighbor method. The classification-based method
treats each label as a class and for each class by constructing
a classifier to represent it. The probabilistic modeling-based
method attempts to infer the correlations or joint probabilities
between images and labels. The nearest neighbor method
regards image annotation as image retrieval problem and uses
a greedy label transfer mechanism[1]. Non-parameter nearest
neighbor method has been found to be quite successful for
image annotation.

In recent years, sparse coding method is popular in com-
puter vision research field. Sparse coding assumes that a sig-
nal can be efficiently represented by a sparse linear combi-
nation of atoms from a given or learnt dictionary.It has been
successfully applied to face recognition[2].Sparse model has
also been introduced into image annotation recently[3, 4].

In this paper, we present a local sparse model to solve im-
age annotation. Our work is related to [3], but differs from
it. In their work, they utilized label information for feature
selection whereas ignored visual information itself. We com-
bine the label and visual information for feature selection.
Most previous work[3, 4] applied all training data with equal
weight to reconstruct testing data. Here, we assume that an
image can be sparsely represented by its local images with
the weight which exponential delay with distance. Our con-
tributions in this work are the following:

• Combining the label and visual information for feature
selection in image annotation while most of existing
work just utilizes label information. The motivation of
this combination is to decrease the impacts of polysemy
and synonymy.

• Reconstructing an unlabeled image just use those im-
ages which have neighbor relations with it, instead of
all the training images. Classic sparse coding regards
all training data as dictionary and reconstruct test data
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even if it has a large amount of redundant dictionary el-
ements. In image annotation, the large number of train-
ing images makes the computation complexity expen-
sive.

• Penalizing the corresponding reconstruction coeffi-
cients to embed the local information during coding.

The rest of this paper is organized as follows. Relat-
ed work is briefly reviewed in section 2. We introduce our
method in details in section 3. In section 4, we show exper-
imental results on Corel5k dataset. Finally,we conclude the
paper in the last section.

2. RELATED WORK

In this section we give a brief review of the models for auto-
matic image annotation.

As mentioned above, the majority of popular models for
automatic image annotation can be roughly divided into three
categories: classification-based, probabilities model-based
and nearest neighbor methods. The first category regards
each visual concept (i.e. label) as a class and trains a clas-
sifier for each class. Typical models include Support Vector
Machine (SVM)[5, 6], Hidden Markov Model (HMM)[7] and
Gaussian Mixture Model (GMM)[3, 8, 9], etc. This family of
methods deals with each label independently and less consid-
ers the relations between labels. Since the diversity of labels,
many labels are so rare that there aren’t enough positive sam-
ples to train a reliable classifier. Although these models are
difficult to learn label distributions accurately, they are usual-
ly used with other methods together. For instance, in SML[9],
a Gaussian mixture hierarchy was proposed to model the class
distribution; in MSC[3], universal Gaussian Mixture Model
was presented to encode each image into supervector.

The second category attempts to learn the joint probabil-
ities between images and annotations. Representative work
includes Machine Translation (MT)[10], Cross-Media Rel-
evance Model (CMRM)[11], Continuous Relevance Model
(CRM)[12], Multiple Bernoulli Relevance Model (MBRM)[13],
probabilistic latent semantic analysis (PLSA)[14] and hierar-
chical Dirichlet process[15], etc. Due to lack of mature and
universal image segmentation algorithm to obtain the corre-
spondence between labels and image regions, so these models
often use “bag of visual words” model, which inevitably re-
duces the annotation performance.

Nearest neighbor method treats image annotation as im-
age retrieval problem. Makadia et al. [1] introduce a new
baseline technique for image annotation that treats annota-
tion as a retrieval problem. They utilized low-level image
features and a simple combination called Joint Equal Con-
tribution (JEC) of basic distances to find nearest neighbors
of a given image and used a greedy label transfer mechanis-
m to annotate image. Subsequently, Guillaumin et al. [16]

proposed TagProp, a discriminatively trained nearest neigh-
bor model. TagProp allows the integration of metric learning
by directly maximizing the log-likelihood of tag predictions
in the training set. This kind of methods has good scalabil-
ity in the number of labels of interest and can achieve very
competitive annotation performance.

3. OUR APPROACH

In this section, we present our approach for image auto-
annotation in detail. Nearest neighbor methods show that
labels of query image are mainly determined by its local
neighbors according to the image-to-image distance measure.
However, image feature usually has noise and inevitably re-
duces the performance of annotation. For another, images
with more similar labels should be more similar in feature
space while original feature does not always. We make use of
label and visual information to select features.

3.1. Feature Selection

The goal of feature selection is to learn a linear transfor-
mation matrix P ∈ Rd×p(p < d) to transform data from
the original space to a lower-dimensional space, in which
the semantic relations can be retained, i.e. yi = PTxi.
X = [x1, x2, ..., xn] ∈ Rd×n denotes training images’ fea-
tures and Y = [y1, y2, ..., yn] ∈ Rp×n indicates the corre-
sponding transformed features. In the multi-label context,
there are some samples with less similar label sets are even
more similar in original feature space. The projection learn-
ing should decrease or eliminate this difference.

As existing samples with label sets similarity inconsistent
with visual feature similarity, we adopt label sparse coding
by l1-minimization to construct semantic graph as[3]. The
weight matrix W 1, calculated from Algorithm 1, describes
the semantic relations between each image and the rest ones.
The semantic relations should be retained in low dimensional
feature space, hence,

min
P

1

2

∑
i

∥PTxi −
∑
j

W 1
ijP

Txj∥22, s.t.PTP = I (1)

Using the label vectors of other images in the training set
to sparsely reconstruct the label vector of each image instead
of calculating the similarity between two label vectors isn’t
valid to deal with some polysemous words. For example, an
image has labels “apple” and “table”. Label “apple” might
mean fruit, apple computer while they are visually different.
So we combine visual features and labels together to obtain
desired low-dimensional feature space.

As we have stated above, local neighbors information,
which is help for annotation, should be kept in projection
learning. In order to find the projection matrix with the min-
imal local estimation error, we can solve the following opti-
mization problem[17]:
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Algorithm 1: Semantic Graph W 1 Construction
Input: The label matrix of training images, represented

by C = [c1, c2, ..., cn] ∈ Rm×n;
Output: The semantic graph W 1 with all diagonal

elements being zero;
Set C/ci = [c1, ..., ci−1, ci+1, ..., cn];
for i = 1; i ≤ n; i = i+ 1 do

Set D = C/ci;
Get sparse representation for label vector ci by
solving the optimization problem:

min
α

1

2
∥ci −Dα∥22 + λ∥α∥1 (2)

for j = 1; j ≤ i− 1; j = j + 1 do
W 1

ij = αj ;

for j = i+ 1; j ≤ n; j = j + 1 do
W 1

ij = αj−1;

W 1
ii = 0;

min
P∈Rd×p

trace(PTXTXTP ), s.t.PTP = I (3)

where T = (I −W 2)T (I −W 2). In order to construct the
matrix W 2,we make use of label sets to seek images neighbor
relations and generate the Gaussian kernel matrix over these
neighbor images. The matrix is constructed as follows:

1. For ∀xi and ∀xj , compute label sets similarity Sij =
cTi cj

min(|ci|,|cj |) . If Sij > δ (δ is a constant), then we think
xi and xj are neighbors (i.e. xj ∈ Ni and xi ∈ Nj).

2. For ∀xi, compute αT
i = kTi (Ki+λI)−1, Ki ∈ Rni×ni

is kernel matrix over xj ∈ Ni, where K(x, xi) =

exp(−∥x−xi∥2

γ ), ki denotes the vector [K(xi, xj)]
T for

xj ∈ Ni, αi ∈ Rni .

3. W 2 = [wij ]
n×n, if xj ∈ Ni, then wij equals the corre-

sponding elements of αi, otherwise wij equals 0.

By combining Eqs.(1) and (3),the projection matrix P can
be formulated by solving the following optimization problem:

min
P∈Rd×p

trace(PTX∆XTP ), s.t.PTP = I (4)

where ∆=β(I−W 1)
T
(I−W 1) + (I−W 2)

T
(I−W 2), β is a

constant, which balances objective (1) and (3). The solution
for formulation (4) can be obtained with the eigenvalue de-
composition method,

X∆XT pk = λkpk (5)

where pk is the eigenvector corresponding to the k-th smallest
eigenvalue λk of X∆XT and also the k-th column vector of
the matrix P .

Fig. 1. An example of classic sparse reconstruction

3.2. Local Sparse Model

Based on the above feature selection approach, we can trans-
form the original feature space into a low-dimensional feature
space. The task of multi-label image annotation is to assign a
set of labels to the query image. We assume that the more sim-
ilar label sets among images are more similar in transformed
lower-dimensional feature space, since feature selection here
trys to solve or decrease the inconsistent between label and
visual similarity. An image has many components, in this
context, even though two images are very close, they have
some different components. Since we don’t segment these
images, it’s difficult to tag an image using traditional one-to-
one mode. Hence, we apply sparse coding to solve this prob-
lem while [3, 4] also address the image tagging problem via
sparse coding. However, they treat every element in the giv-
en dictionary equally for each unlabeled image. An example
of the classic sparse coding is illustrated in Fig.1.Since treat-
ing all the training data as dictionary and all the dictionary
elements are assigned with equal weight, it makes the recon-
struction coefficient smaller even the image has more similar
labels, as shown in Fig.1, and it loses the local information
that is beneficial to annotate image. In order to drop off it
and improve the performance, we propose the following local
sparse coding procedure to reconstruct a query image.

1. For a query image q, find its K nearest neighbors in
training data over transformed feature space, which is
denoted by Nq

2. Treat all yi ∈ Nq as dictionary elements , denoted by
Dq and optimize the formulation :

min
αq

1

2
∥ q−Dqαq ∥22 +λ ∥ diag(wq)αq∥1 (6)

where wq ∈ RK and wqi=exp (∥yi−q∥2

δ ), yi ∈ Nq .
We adopt a weighted version of LARS[18, 19] to solve
formulation (6).

3. Expand the dimensionality of αq to n, represented by
αq

′. If yi ∈ Nq , then αqi
′ equals the corresponding

elements of αqi; otherwise, αqi
′ equals 0.
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method MT CMRM CRM CRM-Rect MBRM SML LASSO MSC* Our method
P 0.04 0.10 0.16 0.22 0.24 0.23 0.24 0.23 0.24
R 0.06 0.09 0.19 0.23 0.25 0.29 0.29 0.24 0.25
N+ 49 66 107 119 122 137 127 159 180

Table 1. Performance comparison of different automatic image annotation methods on Corel5k dataset. MSC* refers to our
implementation of [3] using our features.

3.3. Tag Propagate

Our goal is to assign a few of related labels to the unlabeled
image. As above, we have reconstructed these query images,
obtained the coefficient matrix α′ = [α1

′,α2
′,...,αt

′]. In tag
propagation process, the semantic relations are transformed
from feature space to label space. We can get annotation ma-
trix as follows:

Cq=Cα′ (7)

where C= [c1,c2,...,cn] is the label matrix of the training im-
ages. The top labels with the largest values in every column
cqi are considered as the final tagging results of the query im-
ages.

4. EXPERIMENTS

In this section, we evaluate the effectiveness of proposed ap-
proach for automatic image annotation task by comparing it
with several existing state-of-the-art algorithms on Corel5k
dataset.

Feature Extraction. Corel5k dataset has become an im-
portant benchmark for keyword based image retrieval and im-
age annotation. It contains around 5000 images and manually
annotated with 1 to 5 words. The set splits into 4500 training
and 500 test examples. Here, we extract five different types of
features, namely Grid Color Moment, Local Binary Pattern,
Gabor Wavelets Texture, Edge[20] and Gist[21].

Evaluation Measures. We evaluate our approach with
standard performance measures as previous work, that eval-
uate annotation performance per keyword, and then average
over keywords. Precision and recall of each keyword are
used as the performance measures. Precision of a word is
defined as the number of images correctly annotated with this
word (r) divided by the total number of images annotated (n),
i.e.P= r

n ; Recall of a word is defined as the number of im-
ages correctly annotated with it divided by the number of im-
ages that have this word in the ground-truth annotation (N ),
i.e.R= r

N . N+ is used to denote the number of words with
nonzero recall value, which indicates how many words the
system has effectively learned. As previous work, each im-
age is forced to be annotated with five words, even if the im-
age has fewer or more words in the ground-truth. With more
words annotated, recall will be increased while precision is
decreased.
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Fig. 2. Precision-Recall curves of our method and MSC* with
the number of annotations from 2 to 7.

Results on Corel5k. Table 1 lists the comparison results
of automatic image annotation on Corel5k dataset.Several
state-of-the-art methods are compared.Results are reported
for 260 words in the testing set.The parameters of Local S-
parse Coding approach, proposed in this work, are selected
corresponding to the best F1 value.In our experiment, we find
720 nearest neighbors to reconstruct unlabeled image.The re-
sults in Table 1 show that our approach is effective for image
annotation. From the results in Table 1, we can make several
observations. First, even though we achieve the same preci-
sion and recall as MBRM, which is one of the most popular
and effective algorithms in image annotation field, we can
obtain more words with positive recall.Second, although the
recall of our method is lower than that of SML, we can get
higher P and N+.Third, compared to MSC method using
the same features, we obtain improvements in precision and
recall, and count 21 more words with positive recall. In ad-
dition, from Fig.2 we can see that our method consistently
outperforms MSC*. In a word, our method is superior or
highly competitive to several state-of-the-art approaches.

5. CONCLUSIONS

In this paper, we present a novel local sparse coding ap-
proach for automatic image annotation.During reconstruction
process, we penalize the corresponding reconstruction coeffi-
cients to embed local information. We reported experimental
results on Corel5k by using P, R and N+ performance mea-
sures. Experiments show the performance of our approach is
comparable to several state-of-the-art algorithms. In the fu-
ture, we would like to investigate other sparse methods such
as structured sparse methods and use label semantic relations
and local information to further guide the annotation task.
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