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ABSTRACT 
 
The combination of sparse coding and manifold learning 
has received much attention recently. However, the 
computational complexity of the resulting optimization 
problem hinders its practical application. In this paper, an 
augmented Lagrangian method is proposed to address this 
issue, which first transforms the unconstrained problem to 
an equivalent constrained problem and then an alternating 
direction method is used to iteratively solve the 
subproblems. Experimental results validate the effectiveness 
of the propose algorithm.  
 

Index Terms— Image clustering, augmented Lagrangian, 
alternating direction method, graph regularized sparse coding. 
 

1. INTRODUCTION 
 
Sparse coding/representation (SC),  as a new way to encode 
signal using only a few active coefficients under 
overcomplete and adaptive dictionary, has drawn a lot of 
attention recently in signal processing and machine learning 
[1, 2].  

Given an input data matrix N MX R ×∈ , with each column 
corresponding to a signal vector, the matrix factorization 
methods aim to simultaneously construct two matrices 

N JB R ×∈  and J MS R ×∈ such that X BS≈ . In this 
approximate decomposition model, each column of B  is a 
basis vector corresponding to a certain semantic concept 
and the whole set is named as the dictionary. Meanwhile, 
each column of S  stands for the representation weights of 
the corresponding signal in this dictionary. Compared with 
other developed approaches such as sparse PCA [3] and 
sparse NMF [4], sparse coding exhibits several advantages. 
First, the target dictionary is usually posed a few constraints 
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such as norm-constraint to enable meaningful result, thus 
producing more freedom and flexibility on capturing the 
high-level semantics. Second, sparse coding adds the sparse 
constraint on S  such that the sparse representations allow 
quick retrieval, thus benefitting image indexing.  

Several variants of the sparse coding technique have 
been proposed recently by adding additional constraints [5, 
6]. Among them, the consistence between similar local 
features is most typically considered. Mairal et al. 
developed simultaneous sparse coding by adding a group-
sparsity regularizer to integrate the self-similarity constraint 
into dictionary learning for image restoration [5]. Zhang et 
al. presented a graph regularized sparse coding (GraphSC) 
method which incorporates a k -nearest neighbor graph into 
the sparse coding objective function as a regularizer [6]. 
Superior performance was generally attained. 
    Although sparse coding has attracted much attention with 
its wide applications in various settings, the issues of 
computational complexity and local optimality are yet to be 
addressed due to the non-convexity and high non-linearity 
nature of the problem [7], which limits its practical 
application. Therefore, developing an efficient and robust 
algorithm is still highly desirable. In this paper, an 
augmented Lagrangian method is proposed to solve the 
graph regularized sparse coding problem. 
 
1.1. Problem Formulation 
 
In GraphSC [6], the manifold assumption is adopted. It 
states that if two data points x i , x j  are close in the intrinsic 
geometry of the data distribution, then their representations 
si  and s j  in the new dictionary are also close to each other. 
Specifically, a nearest neighbor graph G  with M vertices is 
constructed, where each vertex represents a data point in X , 
and W be the weight matrix of G . If x i  is among the k -
nearest neighbors of x j or vice versa, 1ijW = , otherwise, 

0ijW = . Additionally, the degree of x i is defined as 
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criterion for properly mapping the weighted graph G  to 
sparse coefficients S  is to minimize the following function 
[6]: 
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where L=D-W is the Laplacian matrix. Overall, the 
objective function of GraphSC consists of three terms: the 
empirical loss function, the Laplacian regularizer, and L1-
based sparse penalty function as following:   

2

1, 1
2

min ( ) s
2

. . b 1, 1, ,

M
T

iFB S i

j

X BS Tr SLS

s t j J

λ α
=

− + +

≤ ∀ =

∑
           (2) 

where b j  is the j -th vector from matrix B . Particularly, 
Eq.(2) degrades to the basic sparse coding when 0α = .   
 
1.2. Previous Work on Solving (2)  
 
Traditional approaches solve the nonlinear minimization 
problem (2) with 0α =   by iterating the two-step procedure. 
This procedure consists of a sparse-coding step where the 
sparse coefficients S  are estimated with the dictionary 
fixed and a dictionary-updating step where B  is computed 
based on the current sparse representation. 

  At the sparse coding step, the commonly used 
techniques are the Matching Pursuit (MP) and the Basis 
Pursuit (BP). At the dictionary updating step, the 
constrained optimization problem can be solved by using 
several algorithms, such as the Maximum A Posteriori 
(MAP) method with iterative projection [8], dual version 
derived from its Lagrangian (Dual-Feature) [6], and K-
Singular Value Decomposition (K-SVD) [1]. Recently, Liu 
et al. [9] introduced the augmented Lagrangian and 
alternating direction method to dictionary learning (AL-DL) 
for image denoising. The numerical comparisons show its 
faster convergence and better recovery than the 
predecessors.  
      For the more complicated graph regularized sparse 
coding with 0α ≠  (e.g. GraphSC), the Dual-Feature 
method was usually extended to solve (2) [6]. However, 
new algorithms are still needed with a lower computational 
complexity and better convergence.  
 
1.3. Proposed Approach 
 
In this paper, we extend the augmented Lagrangian (AL) 
technique to deal with the general problem (2) for clustering, 
and illustrate its superiority on computational complexity 
and convergence behavior over existing algorithms. 
Specifically, the original unconstrained problem (2) is 
transformed into a constrained problem, by the application 
of a variable splitting operation; the resulting problem is 

then handled using a variant of the alternating direction 
method (ADM). The proposed method can be seen as an 
extension of the AL-DL for solving the problem of combing 
the Graph Regularization and Sparse Coding, and is thus 
named GRSC-AL.  
      Compared with the traditional sparse coding and 
GraphSC, GRSC-AL is experimentally shown to efficiently 
solve the image clustering problem with formulation (2), in 
terms of clustering accuracy and computation time.  

The outline of the paper is as follows. Section 2 briefly 
reviews the AL and ADM. Section 3 elaborates on the 
derivation of GRSC-AL. Section 4 reports the results of 
numerical experiments, and Section 5 concludes the paper 
with a few remarks and points to future work. 
 

2. VARIABLE SPLITTING AND ADM 
 
Although AL method is a commonly studied optimization 
algorithm for solving the constrained problems in 
mathematical programming community [10], it is enjoying a 
re-popularization recently due to the work of Osher et al. 
[12] and has been used in various applications of 
signal/image processing [9-14]. The AL related methods 
usually employ the operator splitting first to transform the 
original unconstrained minimization problem to the 
equivalent constrained problem, and then alternating-
minimization strategy is used to iteratively find solutions of 
the subproblems. Generally speaking, the AL scheme aims 
to solve the following problem:  

  
, ,

min  ( )       . .       0
Z B S

E Z s t Z BS− =              (3) 

Problem (3) can be solved via the standard augmented 
Lagrangian method. Specifically, starting from 0 0Y = , it 
solves   

1 1 1
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at the k -th  iteration for 1 1 1( , , )k k kZ S B+ + + , then updates the 
multiplier Y  by the formula 

1 1 1 1( )k k k k kY Y Z B Sμ+ + + += + −  .                 (5) 
Since solving (4) for Z , S  and B simultaneously can be 
difficult, an alternative choice is to minimize the augmented 
Lagrangian function with respect to each block variable Z , 
S  and B  one at a time while fixing the other two blocks at 
their latest values, and then update the Lagrange multiplier 
using 

1 1

,
( , ) arg min  ( , , , )k k k k

Z S
S Z L B S Z Y+ + =  ,                 (6) 

1 1 1arg min ( , , , )k k k k

B
B L B S Z Y+ + += .                (7) 

 
3. PROPOSED METHOD 

 
3.1. Framework 
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By employing the operator splitting to problem (2), the 
unconstrained minimization problem is transformed to an 
equivalent constrained problem: 
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The augmented Lagrangian function of problem (8) is 
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Directly finding the saddle point of the augmented 
Lagrangian function ( , , , )L B S Z Y  is difficult, hence the 
alternating direction method (ADM) is used to solve the 
following sub-problems iteratively: 
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21 1 1arg min
2

k k k k

FB
B BS Z Yμ μ+ + += − −  ,          (11) 

            1 1 1 1( )k k k k kY Y B S Zμ+ + + += + − +  .                     (12) 
 
3.2. S -and Z -subproblems  
 
Firstly, the minimization of Eq. (10) with respect to Z  can 
be computed analytically. Specially, with the first and fourth 
terms of Eq. (10), we obtain the optimal solution: 

 ( ( )) ( )k kZ X B S Yλ μ μ λ μ= + − + .           (13) 
Moreover, it follows that  

1
1 1 1 ( )( )

k k k
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+
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+
. (14) 

In the following, the determination of S  is a crucial 
problem. Here a proximal operator and the threshold 
technique are employed to find the approximate solution, 
and subsequently an iterative procedure is developed. 
Concretely, substituting Z  of Eq. (13) into Eq. (10) yields 
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When updating si , the other vectors {s }j j i≠  are fixed. The 
optimization problem for each si : 
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Then following the iterative shrinkage/thresholding 
algorithm (ISTA) [12, 14], it yields  
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where [ 2( )] (( ) )k T k
iieig B B Lγ λμ λ μ α≥ + + .  

 
3.3. B -subproblem 
 
By taking the derivative of Eq. (11) with respect to B and 
setting it to zero, we can get the following update rule: 

1 1 1 1
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Then, the normalization on dictionary columns is required 
such that the dictionary 1kB +  is a matrix whose columns are 
unit 2l -norm. 
 
3.4. Parameters and Algorithm Convergence 
 
The proposed algorithm involves three important parameter: 
λ , α  and μ . The computation time of the algorithm is 
mainly controlled by Line 4-5 in Algorithm GRSC-AL. 
 
Algorithm GRSC-AL 
1: initiation: 0 0S = ; 0 0C = ; 0B ; λ ; α ; μ  
2: while stop-criterion not satisfied (loop in k ): 
3:      while stop-criterion not satisfied (loop in m ):  

4:            1 ,( )m k k m kY B S X Cλμ μ
λ μ

+ = − + +
+

; update mH  

5:            
,

, 1 , [ 2 ( ) ( ) ] 1( , )
2 2

k m m k T m
k m k m

k k

S diag L H B YS Shrink S α
γ γ

+ − − += +  

6:       end while of loop m  
7:      1 1k mC Y+ += ; 1,0 , 1k k mS S+ +=  
8:      1 1 1,0( )k k k k TB B C Sζ+ + += + ; 1 1 1

2
b b bk k k

j j j
+ + += , j∀  

9:       [ 2( )] (( ) ) ( )k k T keig B B diag Lγ λμ λ μ α= + +  
10: end while of loop k 
 

It is worth noting that when the augmented Lagrangian 
method was employed in non-convex problems, the authors 
in Refs.[9] and [13] stated that only a weak convergence is 
observed in their algorithms, i.e., under mild conditions any 
limit point of the iteration sequence generated by the 
algorithm is a Karush-Kuhn-Tucker (KKT) point. In our 
work, we also give a result with regard to the convergence 
of the Algorithm GRSC-AL for this new non-convex 
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problem. It should be emphasized that although the 
following convergence result is far from being satisfactory, 
it provides an assurance for the behavior of the algorithm. 
Moreover, empirical evidence suggests that the proposed 
algorithm has a very strong convergence behavior. 
 
Proposition 1. Let ( , , )V B S Z  and 1{ }k

kV ∞
=  be generated 

by algorithm GRSC-AL, Assume that 1{ }k
kV ∞

=  is bounded 
and +1lim( )=0k k

k
V V

→∞
− . Then any accumulation of 1{ }k

kV ∞
=  

satisfies the KKT conditions. In particular, whenever 
1{ }k

kV ∞
=  converges, it converges to a KKT point of (8). 

 
4. EXPERIMENTS 

 
The following three algorithms for image clustering: the 
proposed GRSC-AL + K-means, Sparse coding (SC) + K-
means, and GraphSC (implemented by Dual-Feature 
method) + K-means, were compared on two real world 
image datasets, i.e., CMU-PIE face database and COIL20 
image database. The CMU-PIE face database contains 68 
subjects and each has 21 images under different lighting 
conditions. The COIL20 image database contains 20 
subjects and each has 72 images under different rotated 
orientations. All algorithms were implemented in MATLAB 
on a Window XP laptop with 3.1GHz processor and 4GB of 
RAM. 

Specifically, all algorithms firstly applied PCA to reduce 
the data dimensionality and then performed in the subspace. 
Finally, the K-means algorithm was applied on the new 
representations to obtain the clustering result. The 
dimensionality after PCA projection and the dictionary size 
used in the experiments were the same as those in ref. [6]. 
The parameters in SC, GraphSC, and GRSC-AL (e.g. λ ,α ) 
were determined by cross validation [6]. Besides, the 
parameter μ in GRSC-AL was set to be 10. The clustering 
results were evaluated by accuracy (AC) and normalized 
mutual information (NMI) [6], where AC was defined by 
comparing the clustered label of each sample with the label 
provided by the dataset, and NMI measured the dependence 
between the sets of clusters obtained from the compared 
algorithm and the ground truth.  
     Fig. 1 and Fig.2 show the plots of clustering AC and 
NMI versus the number of tested cluster ( c ) ranging from 4 
to 68 on the CMU-PIE database and from 2 to 20 on the 
COIL20 database, respectively. It can be observed that our 
proposed algorithm generally outperforms the GraphSC 
algorithm, especially when c  is larger. Fig. 3 displays one 
run of these two algorithms, in terms of the evolution of the 
NMI when 68c = . As can be seen, GraphSC needs almost 
40 iterations to reach the convergence zone of NMI and our 
proposed algorithm needs only about 10 iterations. The 
average computation times per iteration of GraphSC and 
GRSC-AL on the two datasets are shown in Table 1. 

Obviously, the average computation time per iteration of 
GRSC-AL is much shorter than that of GraphSC. 
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Fig.1. AC (left) and  NMI (right) versus the number of clusters on 
CMU-PIE 
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Fig.2. AC (left) and  NMI (right)  versus the number of clusters on 
COIL20  
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Fig.3. One run of the evolution of the NMI on CMU-PIE using 
GraphSC(left) and GRSC-AL(right) when 68c =  
 
Table 1. Average computation time per iteration  

Algorithm CMU-PIE, 68c =  COIL20, 20c =
GraphSC 31.2s 68.7s 

GRSC-AL 0.74s 1.19s 
 

5. CONCLUSIONS 
 
An efficient algorithm for solving graph regularized sparse 
coding is proposed. The algorithm extends the augmented 
Lagrangian framework to non-convex problems involving 
more than two blocks of variables. Preliminary experiments 
in clustering demonstrate that the proposed algorithm 
outperforms the existing algorithms in terms of 
computation-al time and discriminating power. Ongoing 
research includes a thoroughly experimental evaluation of 
GRSC-AL in clustering, classification [6] and restoration 
[15].  
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