978-1-4799-0356-6/13/$31.00 ©2013 IEEE
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ABSTRACT

In this paper, a hybrid multiview imaging system is consid-
ered, where traditional cameras and compressed sensing (CS)
cameras are interleavingly placed. To improve the reconstruc-
tion quality of the CS cameras, the interpolated image from
the two neighboring traditional cameras is used as side infor-
mation. Different from existing CS-based multiview imag-
ing systems, we incorporate in the CS reconstruction both
the frame-level and pixel-level confidences of the interpolated
view, based on the knowledge of occluded pixels and holes in
it. Simulation results demonstrate the flexibility and superior
performance of the proposed framework.

Index Terms— Compressed Sensing, Multiview Images,
View Interpolation, Occlusion.

1. INTRODUCTION AND RELATION TO PRIOR
WORK

Multiview images are captured by a group of cameras from
slightly different locations. Together with new display tech-
nologies such as free view-point TV and autostereoscopic
displays, an immersive viewing experience can be achieved.
However, multiview systems require higher costs for da-
ta acquisition, storage and transmission. Fortunately, in
most multiview applications, there exist strong correlations
between neighboring views. Therefore view-interpolation-
based methods can be used to improve the compression
efficiency [1,2]. It can also be used to reduce the acquisition
cost. In this paper, a hybrid multiview imaging system is
considered, where traditional high-resolution cameras and
emerging low-cost compressed sensing (CS) cameras are in-
terleavingly placed. The key idea of the CS theory is that if
a signal is sparse in some basis, it can be reconstructed with
high quality via simple random sampling at the encoder and
¢1-norm optimization at the decoder [3]. Therefore the cost
of the CS cameras can be lower than traditional cameras.

A number of CS-based single-view video systems have
been proposed that take advantage of the correlations between
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neighboring frames. In [4], the video frames are divided in-
to non-key and key frames. To reconstruct a non-key frame

1I;, the motion-compensated prediction 1 j generated from t-
wo neighboring key frames is used as the starting point of
the Gradient Projection for Sparse Reconstruction (GPSR) al-
gorithm [5]. Several stopping criteria for GPSR are studied.
In [6], another distributed compressed video sensing (DIS-
COS) scheme is proposed, based on the assumption that the

difference between I; and the side information 1 j is also s-
parse in some basis. Therefore, instead of reconstructing the
original frame I; directly, the GPSR is used to reconstruct the

residual frame Iy = I; — /f]' from the residual measurement

Y, = ®(I; — 1;). Once the residual frame is estimated, it
is added back to the side information to get the final recon-
structed frame.

CS-based multiview imaging systems have also been s-
tudied. In [7], the side information for CS reconstruction
is generated from neighboring views by disparity estimation
instead of motion estimation. The CS recovery is based on
projection-based reconstruction, a specific instance of a pro-
jected Landweber algorithm. In [8], a different approach to
exploit the interpolated side information from neighboring
cameras is developed, based on the belief propagation-based
compressive sensing framework (BPCS) [9]. The method in
[8] also uses the side information as the starting point for the
belief propagation. One limitation of BPCS is that it assumes
that different transform coefficients have the same distribu-
tion, which is not the case in natural images and videos.

However, existing multiview imaging systems in [7, 8]
have not fully exploited all information in view interpolation.
First, it is known that view interpolation quality is highly de-
pendent on the scene composition. Therefore, based on the
overall frame-level confidence of the interpolated image pro-
vided by the view interpolation algorithm, we should have a
mechanism to adjust the influence of the view interpolation
result on the CS reconstruction.

Secondly, many view interpolation algorithms also pro-
vide confidence information at pixel level [2], in terms of the
number of matching points a pixel of the interpolated view
can have in the two neighboring views. Usually, pixels with t-
wo matching points have higher reconstruction quality. Pixels
with only one matching point are occluded in one neighboring
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view, thereby having lower interpolation quality. For pixels
without any correspondence in the neighboring views (corre-
sponding to holes in the initial interpolated image), various
inpainting methods have to be used to estimate their values.
Therefore these pixels generally have the lowest confidence.

If these issues are not addressed properly, existing view
interpolation-aided multiview CS reconstruction methods
could perform even worse than direct CS reconstruction. In
this paper, we propose a modified GPSR algorithm by adding
another term to the objective function. The term measures the
squared error between the CS-based and view-interpolation-
based reconstructions. The weighting parameters of this term
are determined by both the frame-level and pixel-level con-
fidences of the view interpolation result. We show that the
modified method can still be converted to the GPSR frame-
work. Simulation results demonstrate that the framework is
very flexible and can outperform existing methods.

2. BACKGROUND OF CS AND GPSR

Assume z is a length-/V, real-valued signal whose decompo-
sition € in an orthonormal basis ¥ has K significant coeffi-
cients (K sparse), i.e., z = V6. In compressed sensing, the
measurement is obtained by a simple linear operator & of size
M x N, where M < N. Thatis,y = &z = dUH = A0 [3].
Typical measurement matrices used in CS include Gaussian,
sub-Gaussian, or Bernoulli matrices.

The problem of reconstructing x or 6 from y is underde-
termined. However, since 6 is sparse, the £; optimization can
be used, for example,

argmin||d]];, st y=A0. (1)
0

The problem can be efficiently solved via linear program-
ming. However, for large-scale applications, the speed of the
optimization algorithms can be very slow. Recently, a fast
Gradient Projection for Sparse Representation (GPSR) algo-
rithm has been developed [5], which starts with the following
unconstrained convex optimization problem

. 1
arg min (5 ||y—A9H§+TH9||1), 2)

where 7 is a weighting parameter that enforces the sparsity
constraint.

To solve this, it first decomposes 6 into its positive and
negative parts.

0=u—wv,u>0,v>0. 3)

The problem can then be converted to the following bound-
constrained quadratic programming (BCQP) formulation of
basis pursuit or similar problems [3].

minc’z + 327Bz = F(z2),
z

4
s.t. z2>0, @
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where

-b
z:{g}, b:ATy7 C:TlgN+|:b },

ATA  —ATA } ®

b= { _ATA ATA

The solution to (4) is equal to the solution of (2) if the free
parameter 7 is much less than 1.

It is shown in [5] that good solutions can be obtained very
fast by using gradient projection, special line search and ter-
mination techniques, making the GPSR method very attrac-
tive.

3. GENERALIZED GPSR WITH VIEW
INTERPOLATION CONFIDENCE

In this section, we propose a generalized optimization frame-
work to consider the occlusions and holes in the interpolated
image. We then show that the framework can be converted in-
to the standard BCQP format, which can be efficiently solved
by the GPSR algorithm.

3.1. Generalized Optimization Framework

Our goal is to reconstruct the middle image I; from its linear
CS measurements y, with the help of the interpolated mid-

dle image 1 ;j generated from the left and right reference im-
ages I;_1,1;1 (given by conventional cameras). Due to the
strong correlation between images in multi-view image sys-
tem, the final reconstructed image should be generally close
to the interpolated image. However, the quality of the interpo-

lated image 1 ; is affected by the number of occlusion pixels
and the size of the holes in it. Hence, if we reconstruct the

difference image between I; and T ; and add it back to 1 jto
get the reconstructed image, the performance could be even
worse than directly reconstructing the middle image from its
CS measurement, because the sparsity of the difference image
could be larger than the sparsity of the original middle image
in this case.

To resolve this potential issue, we propose the following
generalized optimization framework.

N
. 1 2 p —~ 2
arg min (2 Iy = A0YS 00+ 5 3w (12— 1) )

(0)
where 6 is the sparse representation of I; in basis ¥, ie.,
I; = W0. The last squared-error term is new compared to the
original GPSR in (2). I; ; and fz ;j denote the i-th pixel of the
target image I; and the interpolated image 1 j» Tespectively.
1 is a weighting parameter that is determined by the overal-
1 frame-level confidence of the view-interpolation algorithm,



and w; is the weighting parameter for the ¢-th pixel, which is
determined by the pixel-level view interpolation confidence.

A larger value of 1 can be used if the overall view interpo-
lation has higher quality. In this case, the view interpolation
is more trustworthy. On the other hand, i should be smaller
if there are many occlusion pixels and holes in the view in-
terpolation; hence the CS reconstruction should rely more on
the linear measurement from the CS camera.

Similarly, the pixel-level weighting parameter w; should
be larger when a pixel in the middle view has two point cor-
respondences in the neighboring views. A smaller w; should
be used when there is only one point correspondence, i.e., the
pixel is occluded in one view. Finally, the smallest w; should
be used when no point correspondence can be found, as the
pixel is in a hole in the initial view interpolation. The occlud-
ed pixels and holes usually occur near the edges of objects in
an image.

The impacts of 1 and w; will be studied in Sec. 4.

3.2. Conversion to the Standard BCQP Format

Let 0 be the sparse representation of the interpolated image

I; in basis ¥, 1); the i-th row of ¥, and R; = ¢ZT’(/)Z‘, which
is a symmetric matrix. Each squared error in the last term of
(6) can be written as

(g =Ty =0 - 0)"Ri(6—0) - (@

Asin (3), we split 6 and 6 into their positive and negative
parts. The generalized framework in (6) can thus be convert-
ed to the standard BCQP format in (4), with the following
definitions:

N
_|wu _ AT Ri—D
Z—{,U ] b=A y+uzszl(u v),

=1

—b
C:T12N+|:b :|,

N N

ATA+ p Y wiRy  —(ATA+p Y wiR;)
B— i=1 i=1
N

7(ATA +u Z U)ZRl)
=1

3

N
ATA+ 12 Z w; R;
i=1

®)

The GPSR algorithm can then be used to solve this BCQP
problem.

4. SIMULATION RESULTS

In this section, we present some simulation results to compare
our proposed algorithm with other GPSR-based algorithms.
The orthonormal basis in the CS is chosen as the DCT. In the
image acquisition step of compressed sensing, the scrambled
block Hadamard ensemble (SBHE) method proposed in [10]
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is used. The size B and free parameter 7 are chosen according
to [10]. The view interpolation method in [1] is used.

In the following experiments, View-Interp represents the
view interpolation result given by the method in [1], which
will be included in the figures as a reference. Direct-GPSR
refers to a method similar to the scheme in [4], where the view

interpolation result 0 is directly used as the initial value of
GPSR reconstruction. Diff-GPSR is the generalization of [6]
to multiview image systems, where the GPSR method is used
to recover the residual frame, which is then added back to the
interpolated image to get the final reconstruction.

VIC-GPSR denotes the proposed view interpolation con-
fidence (VIC)-aided GPSR method. Its initial value is also

chosen as 0. The frame-level weighting parameter p is se-
lected for each multiview image data set, as will be described
below. The pixel-level weighting parameter w; is chosen to be
1, 0, and O respectively, if a target pixel has two, one or zero
point correspondence in view interpolation. That is, in the in-
terpolated image, we only trust the pixels with two point cor-
respondences when evaluating the CS reconstruction. Though
from the Eq.8, it seems that we need to operate on the column-
s of basis ¥, which highly increases the complexity, in fact,
it can operate on the whole matrix in which case we can use
fast algorithms to do the transformation.

FVIC-GPSR is another special case of the proposed
method, where all w;’s are fixed to be 1. In this case, the
pixel-level view interpolation confidence is not exploited,
and only the frame-level weighting parameter  is in effect.

In the following, the multiview video datasets Akko &
Kayo, Christmas and Teddy are used, with frame size of 640 x
480, 640 x 480, and 448 x 352, respectively. The first and third
views of each dataset are assumed to be given by traditional
cameras, and the second view is assumed to be sampled by
a CS camera and reconstructed by different CS algorithms.
Only the first frame of each view is tested.

Fig. 1 (a) shows the reconstruction PSNR versus CS sam-
pling subrate M /N of different methods with the multiview
image dataset Akko & Kayo. The view interpolation result
shows that the number of target pixels with two, one and zero
point correspondences is 285879, 20317, and 1004, respec-
tively. The weight parameter p is chosen to be 1.

Some observations can be made from Fig. 1 (a). First, at
low subrate, Direct-GPSR is much worse than other methods.
As the number of samples M increases, Direct-GPSR can get
close to and eventually outperform other methods, including
our proposed VIC-GPSR. The reason is that the parameter p
is fixed to 1, which essentially gives the same weight to the
first and the last term in Eq. (6).

Secondly, the proposed VIC-GPSR and FVIC-GPSR, as
well as Diff-GPSR can always have better results than the in-
terpolated view. Our methods also always achieve better re-
sults than Diff~GPSR, and the gain increases with the subrate
(more than 3 dB when the subrate is greater than 0.3), which
shows the power of considering the view interpolation confi-
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Fig. 1. PSNRs versus sampling subrate of different methods. (a) Akko & Kayo. (b) Christmas. (c)Teddy.
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Fig. 2. Original image (a), VIC maps (b), reconstruction errors of Diff-GPSR (c) and VIC-GPSR (d) for Akko & Kayo, as well
as original image (e), VIC maps (f), reconstruction errors of Diff-GPSR (g) and VIC-GPSR (h) for Christmas.

dence information.

Third, VIC-GPSR has better performance than FVIC-
GPSR, thanks to the contribution of the pixel-level confidence
information. The gain also increases with the subrate.

Fig. 1 (b) are the results using the dataset Christmas. The
view interpolation result shows that the number of target pix-
els with two, one and zero point correspondences is 272428,
31029, and 3743, respectively. This means that the view inter-
polation of this dataset is not as good as that in Akko & Kayo,
as indicated by the PSNRs of the view interpolation method
in Fig. 1 (a) and Fig. 1 (b). In our methods, p is set to be 1.

Fig. 1 (b) shows that Direct-GPSR is worse than View-
Interp when subrate is less than about 0.33. This verifies that
if the view interpolation does not have good quality, direct-
ly using it as the initial value of GPSR could lead to even
worse result than the interpolated view. Our methods and
Diff-GPSR can still outperform the view interpolation. Note
that Diff-GPSR only has limited gain over the view interpola-
tion method, and the gain of our methods over Diff-GPSR can
be more than 4 dB when the subrate is greater than 0.3.

Fig. 1 (c) shows the results with the Teddy dataset. The
number of target pixels with two, one and zero point corre-
spondences is 141946, 15289, and 461, respectively. There-
fore, we choose the weighting parameter y to be 5.

It can be seen from Fig. 1 (c) that Diff~GPSR achieves
almost the same result as View-Interp, sometimes even worse
when the subrate is low, because the subrate is not enough
to recover the difference image accurately, and fails to cap-
ture the edges in the middle image. Our proposed algorithm
always achieves the best performance.
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Fig. 2 shows portions of the original image, the view in-
terpolation confidence (VIC) maps, the final reconstrutcion
errors of Diff-GPSR and the proposed VIC-GPSR for two
images. The locations of occluded pixels and initial holes
are represented by gray and white pixels in the VIC maps. It
can be seen that these pixels are near the sharp edges of the
images. The proposed method clearly has much less recon-
struction errors near the sharp edges. This verifies that our
method can avoid the adverse impact of the occlusions and
holes in view interpolation.

5. CONCLUSION AND FUTURE WORK

In this paper, we consider view interpolation-aided com-
pressed sensing of multiview images. Different from existing
methods, we exploit the knowledge of occlusions and holes
in the interpolated view when performing the CS reconstruc-
tion, by assigning more weights to the view interpolation
result when its quality is satisfactory, and vice versa. Experi-
mental results show that our method can outperform existing
CS-based multiview image systems.

The proposed scheme opens up some new topics for future
research. For example, how to automatically determine the
weighting parameters p and w;, and how to generalize it to
multiview video systems. Another possible way to further
improve the performance is to apply the iterative method in

[11].
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