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ABSTRACT

Superimposed images are very common when taking photos behind
glass. We address the reflection separation problem using multiple
superimposed images photographed in different viewpoints. With
viewpoints changing, the reflected scenes could contain arbitrarily
complicated variations between mixtures, like human’s motions or
other nonrigid motions. In this article, we propose a moderate hy-
pothesis to tackle the reflected scenes’ arbitrary variations as well
as the parametric transformations of transmitted scenes. To rapidly
recover high-quality image layers, we propose an Efficient Superim-
position Recovering Algorithm (ESRA) by extending the framework
of accelerated gradient method. Our recovering method has good
converging performance and is more than 30 times faster than state-
of-the-art methods. Experimental results on synthetic and real world
images demonstrate that our method is promising.

Index Terms— Blind separation, nonparametric transforma-
tion, optimization

1. INTRODUCTION

Superimposed images with undesired reflection scenes are often ob-
tained when people take photos behind glasses. These superim-
posed images are linear mixtures of two transparent image layer-
s [1, 2, 3, 4], one of which is the transmitted scene of interest, the
other is the reflected scene. These superimpositions seriously disturb
the viewing of the layers of interest. Thus separating superimposed
images and recovering all layers are needed.

To achieve automatic and good separation, two or more different
superimposed images are needed. A convenient way to obtain mul-
tiple photos is to change viewpoints and take different photos (see
Fig. 1). While by changing viewpoints, two transparent layers are no
longer static mixing, ICA like methods [1, 5, 6, 7, 8, 9, 10, 11] are not
applicable. Although several technologies have recently been devel-
oped to separate superimposed images with different variations: 1)
with parametric motions [2, 3, 12, 13], 2) with time/position variant
mixing [14, 15]. They assume the variations of all layers conform
to the same parametric model. In Fig. 1, the transmitted layer is a
planar painting, and its variations conform to certain rules and can
be modeled with parametric transformations, like planar transforma-
tions. However, transformations of reflected layers contain complex
variations, like human motions (see Fig. 1), which are hard to be
modeled in a parametric way. Gai et al. [16] give an example of
handling this more common problem with their parametric method.
They use different parametric layers to model the reflected layers
with different appearances (in different snapshots) and assume the

Fig. 1. Real superimposed photos of a painting in glass frame.
reflected layers are totally independent of each other. However, the
reflected layers could be arbitrarily similar, making their assumption
unapplicable in some cases. More reasonable hypothesis for this
general blind separation problem and theoretic study are needed.

Moreover, when the variations of latent transparent layers are
well estimated, fast recovering high quality latent layers is preferred.
Existing methods [4, 17] can fast restore the transparent layers, but
they can not ensure good recovery and have color-bias problem (as
illustrated in [16]). Methods used in [2, 13, 16] can recover latent
layers of high quality, but they are slow (see Table 1).

In this article, we only assume the parametric transformations
for transmitted layers, and formulate this more common superimpo-
sition problem in detail. We propose a more moderate hypothesis to
handle the complicated variations of the reflected layers and give a
theoretic study about our blind estimation method. Moreover, we de-
velop an Efficient Superimposition Recovering Algorithm (ESRA)
by extending the framework of accelerated gradient method [18, 19].
In the proposed ESRA, a key building block (in each iteration) is the
proximal operator calculating, here we propose a Parallel Algorithm
with Constrained Total Variation (PACTV) method to efficiently find
the optimal solution in every iteration. Our recovering method not
only reconstructs high-quality layers without color-bias problem, but
also theoretically guarantees good convergence performance.

2. PROBLEM FORMULATION AND HYPOTHESES

As discussed in Section 1, we release the parametric transforma-
tion assumption about reflected layers and give our more general
formulation. We consider the captured m superimposed images Ii
(i = 1, · · · ,m) are linear mixtures of the transmitted layer Lt and
the reflected layer Lr as in many other work (e.g. [1, 2, 3, 4]). We
assume the variations of transmitted layers conform to a user spec-
ified parametric transformations f(x, θi) with unknown parameter
θi, here x= (x1, x2)

> is a 2D vector that represents the pixel coordi-
nates. In practical situations, reflected layers between mixtures con-
tain nonrigid motions, like human’s motions , or occlusions. There-
fore, we formulate the complicated variations of reflected layers with
a nonparametric transformation ui(x), i.e Lr(i)(x) = Lr(ui(x)).
Here Lr(i) is the reflected layer in ith mixture, and Lr is the refer-
enced reflected image scene. Besides, due to different lighting condi-
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tions or reflection angles, layers’ overall intensity may change from
one mixture to another, leading to different mixing coefficients aij .
Therefore, we finally formulate m superimposed images as

Ii(x) = ai1L
t(f(x, θi)) + ai2L

r(i)(x),

s.t ai1, ai2 ≥ 0, i = 1, · · · ,m,
(1)

where Ii ∈ Rh×w is the ith superimposed image, which is called the
ith mixture. x = [x1, x2]

T represents the pixel coordinates, and aij
is the nonnegative mixing coefficient. Without loss of generality, we
regard layers in the first mixture as the reference layers, so a11 =
a12 = 1 and f(x, θ1) = u1(x) = x. In Fig 2, the four mixtures
(Fig. 2(a)) are superimposed by Lena image and another image using
mixing model (1) with different transformation parameters θi and
mixing coefficients ai1, ai2, respectively.

With mixing model (Eq. 1), only the mixtures Ii are known as in-
put. Both the latent layers Lt, Lr(i) and mixing coefficients ai1 and
transformation parameters θi are unknown. It makes our problem
very challenging. To solve this complicated problem, we review the
previous hypotheses in [16] and propose a new hypothesis for more
general cases. Given parametric transformations f(x, θi), we first
introduce denotations about image layer gradients: ∇L

(
f(x, θi)

)
=

dL(y)
dy

∣∣∣
y=f(x,θi)

and D
(
L(f(x, θi))

)
= df>(x,θi)

dx
∇L
(
f(x, θi)

)
.

Here ∇ = ((∂)/(∂x1), (∂)/(∂x2))
> is the gradient operator, and

L represents the transparent layer Lt or Lr(i). We follow hypothe-
ses in [16] about natural image gradients’ statistical properties: 1)
Sparsity: the gradients of transparent layer ∇L are sparse; 2) Non-
correlation: if the parametric layers in two different mixtures are
not aligned, the correlations between their gradients are nearly ze-
ro; 3) Independence between different transparent layers: the
gradients from any two different transparent layers are totally inde-
pendent, leading to very small correlations between their gradients.

These three hypotheses aim to solve the parametric superimpo-
sition model in [16], which is not enough here. For more gener-
al cases, the variations of reflected layers contain nonrigid motions
and cannot be modeled with a uniform parametric transformation.
To handle such reflected layers with different appearances, Gai et
al. [16] treat reflected layers in different images as different layers,
and assume they are independent of each other. However, the re-
flected scenes could be arbitrarily similar. For example, as shown in
Fig. 4, the reflected layers of synthetic mixtures all have the same
part and are not independent. Thus the independence hypothesis a-
mong them is not reasonable. Therefore, we propose a moderate but
reasonable hypothesis to tackle more general cases about reflected
layers’ variations, including the nonindependent cases.
Hypothesis 1. Nonparametric transformations of the reflected lay-
ers: for any i, given transformation parameter θi of transmitted
layer, we have:

E
[〈
ai1DL

t(f(x,θi)), DL
t(f(x,θi))

〉]
>

max
s

E
[〈
ai2DL

r(1)(f(x, s)),∇Lr(i)(x)
〉]
.

(2)

Here E[·] is the expectation w.r.t. x, and 〈·, ·〉 represents the in-
ner product of two vectors. Gai et al.’s independence hypothesis [16]
means that E

[〈
ai2DL

r(1)(f(x,s)),∇Lr(i)(x)
〉]
≈ 0, given any pa-

rameter s. However, the mixtures shown in Fig. 4 violate this impli-
cation. Here we only assume the maximum correlation between any
two reflected layers gradients is upper bounded. Note that the left
term of (2) is a positive definite form and will be significantly larger
than zero. It is a moderate condition for more general cases (includ-
ing the mixtures in Fig. 4). On the other hand, if our hypothesis is
violated, it implies that the variations of the reflected layers can be

(a) Four mixtures of two layers

(b) Original layers

(c) Extracted gradients of aligned layers

(d) Our results. Elapsed time: 7.7s RMSE: 12.14

Fig. 2. Demonstration of mixtures and their gradients.

modeled with parametric transformations to some extent (the corre-
lation is large under a particular transformation parameter). Methods
in [13, 16] have already solved such rare cases.

3. BLIND ESTIMATION

In this section, we estimate the transmitted layers’ transformation
parameters in the gradient domain with the hypotheses mentioned
above. Then the unknown mixing coefficients ai1 are estimated by
the cluster method [2, 13, 16].

To search for the transmitted layer’s transformation in the sec-
ond mixture, we warp the first mixture I1 by a parametric transfor-
mation f(·, s) with a searching parameter s, and match its gradients
with the second mixture’s gradients ∇I2. Consider the following
transformation objective function of these two mixtures:

O(s) = E
[〈
D
(
I1
(
f(x, s)

))
,∇I2(x)

〉]
. (3)

By use of the mixing model (1) and definitions of D
(
I1
(
f(x, s)

))
,

∇I2(x), the objective function (3) can be expanded as

O(s) = Ct(s) + Cr(s). (4)

Here Ct(s), Cr(s) are the correlation functions of the transmitted
layers and reflected layers, respectively. We ignore the correlation
between transmitted and reflected layers due to the independence
hypothesis. Ct(s) and Cr(s) can be written as follows:

Ct(s) = a21E
[
∇>Lt

(
f(x,s)

)df(x,s)
dx>

df>(x,θ2)
dx
∇Lt
(
f(x,θ2)

)]
, (5)

Cr(s) = a22E
[
∇>Lr(1)

(
f(x,s)

)df(x,s)
dx>

∇Lr(2)
(
x
)]
. (6)

Here we assume f(x, s) is an almost injective mapping, i.e, for
Ct(s), if s 6= θ2, we have f(x, s) 6= f(x, θ2) for most x. Then due
to the noncorrelation hypothesis, ∇Lt(f(x, s)) and ∇Lt(f(x, θ2))
is uncorrelated, thus Ct(s) ≈ 0. Otherwise, if s = θ2, Ct(s) turns
to a positive definite form and will be significantly larger than zero.
In all, we get Ct(s) = Ct(θ2) > 0, if s = θ2, or Ct(s) = 0,
otherwise.

As illustrated in [13], if all layers conform to a parametric
model, θ2 can be found by maximizing (3). While for our more
general cases, can we still find θ2 by maximizing (3)? Gai et
al. [16] assume all the reflected layers belong to different indepen-
dent parametric layers, so Cr(s) = 0, ∀ s. However, we find that
if maxs C

r(s) < Ct(θ2), we can still find θ2 in the same way.
Because given any s 6= θ2, the following inequalities hold:
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O(s) = Cr(s) < Ct(θ2) ≤ Ct(θ2) + Cr(θ2) = O(θ2). (7)
The first inequality is indeed our nonparametric transformations hy-
pothesis (2), which is a more moderate condition to guarantee the
blind estimation method work. Therefore, by our theoretic analysis,
even thoughCr(s) may be larger than zero with some s, maximizing
O(s) can still find the optimal solution θ2.

In this work, we use planar transformations [13] to describe the
variations of transmitted layers. Note, any other form of almost in-
jective parametric transformation can also be applied here. By max-
imizingO(s) with discrete grid search method [13, 16], the transfor-
mation parameter θ2 is obtained. And by exchanging other mixtures
Ii (i = 3, ...,m) for I2, other transformation parameters θi are ob-
tained. If the transformation parameters θi are well-estimated, we
can employ the general cluster method [2, 13, 16] to estimate the
unknown mixing coefficients of transmitted layers and assign the
significant gradients in ∇kI1(x) to latent different transparent lay-
ers. We use Et, Er(i) denote the extracted gradients of Lt, Lr(i),
respectively. Fig. 2(c) shows the extracted gradients of latent trans-
mitted layers in Fig. 2(a).

4. FAST RECONSTRUCTION OF LAYERS

With the extracted gradients of each layer, the reconstruction step is
the final crucial part for reflection separation. In this section, we pro-
pose an Efficient Superimposition Recovering Algorithm (ESRA) to
fast recover the high quality latent layers.

4.1. Efficient Superimposition Recovering Algorithm
With estimated parameters θi, we align the transmitted layers by
warping mixtures Ii with f−1(x, θi). Then our mixing model is
rewritten as:
Ii(f

−1
i (x)) = ai1L

t(x)+ai2L
r(i)(f−1

i (x)), i = 1, · · · ,m. (8)

For simplicity, we use Ii(x) to represent Ii(f−1
i (x)). L1(x) and

Li+1(x) denote Lt(x) and a2iLr(i)(f−1
i (x)), respectively. Let Ei(x)

stand for the extracted gradients from Li(x). To recover high quality
latent image layers, we propose to employ L1 penalty on the extract-
ed gradients and nonnegative constraints on the layers’ intensities
along with the L2 loss of the mixing model. Thus our recovering
objective function is written as:

min
0≤lvec≤1

F (lvec)=λ

m+1∑
x,i=1

|∇Li(x)−Ei(x)|

+

m∑
x,i=1

1

2

(
Ii(x)−ai1L1(x)−Li+1(x)

)2 (9)

where lvec .
= [vec>(L1), · · · , vec>(Lm+1)]> is a large vector con-

taining all pixel values in all latent layers. The first L1 term enforces
the agreement between reconstructed layer gradients and extracted
layer gradients, while the second L2 term tends to satisfy our mixing
mode. Since the extracted gradients are nonzero at very few coordi-
nates, the L1 penalty not only prefers layers with sparse gradients
but also avoids over-smooth results. λ is a trade off coefficient.

To solve the nonsmooth convex optimization model (9) efficient-
ly, we denote

f(lvec) =

m∑
x,i=1

1

2

(
Ii(x)−ai1L1(x)−Li+1(x)

)2, s.t 0 ≤ lvec ≤ 1,

g(lvec) = λ

m+1∑
x,i=1

|∇Li(x)− Ei(x)|. (10)

Here g(lvec) is the `1 penalty on the extracted gradients and f(lvec)
corresponds to the L2 loss and nonnegative constraints. Note that

f(lvec) is continuously differentiable, of which Lipschitz constant
L(f)=

∑
i a

2
i1+1. We note the objective function in (9) is a com-

posite function of a differential term f(lvec) and a non-differential
term g(lvec). Denote

PLs,l
vec
k−1

(lvec)=f(lveck−1)+〈∇f(lveck−1), l
vec−lveck−1〉+

Ls
2
‖lvec−lveck−1‖2,

which is the first order Taylor expansion of f(lvec) at lveck−1, with
the squared Euclidean distance between lvec and lveck−1 as the
regularization term. The traditional gradient descent algorith-
m obtains the solution at the k-th iteration (k ≥ 1) by lveck =
argminPLs,l

vec
k−1

(lvec)+g(lvec) with a proper step size Ls (greater
than L(f)). Here we propose to employ the accelerated gradient de-
scent [18, 19] to solve the reconstruction problem, named Efficient
Superimposition Recovering Algorithm (ESRA). Here we generate
a solution at the k-th iteration (k ≥ 1) by computing the following
proximal operator

lveck → arg min
0≤lvec≤1

PLs,Yk (l
vec) + g(lvec) (11)

where Y1 = lvec0 and Yk = lveck−1 +
tk−2−1

tk−1
(lveck−1 − lveck−2) for

k ≥ 1. We note that Yk is a linear combination of lveck−1 and lveck−2.
The combination coefficient plays an important role in the conver-
gence of the algorithm. As suggested by [20], we set t0 = 1 and

tk = (1 +
√
t2k−1 + 1)/2 for k ≥ 1. According to the theoreti-

cal analysis in [20], this accelerated gradient descent method can get
within O(1/k2) of the optimal objective value after k steps. While
solving problem (11) is still very challenging, we propose a Paral-
lel Algorithm with Constrained Total Variation (PACTV) method to
find the optimal solution, which is presented in the sequel.

4.2. PACTV via dual approach
Given problem (11), we observe it can be solved block sepa-
rable in the following way. If we denote Yk − 1

Ls
∇f(Yk)

.
=

[vec>(d1), · · · , vec>(dm+1)]
> (di ∈ Rh×w i = 1,· · ·,m+1), we

can split Yk − 1
Ls
∇f(Yk) into m + 1 separable parts. Then by

employing the definition of (10), we transform (11) as follows:

lveck = argmin
0≤lvec

k
≤1

{ m+1∑
x,i=1

(
λ|∇Li(x)−Ei(x)|+Ls

2
||Li(x)−di(x)||2

)}
.

As illustrated above, finding lveck is to solve followingm+1 separable
problems with constrained total variation in parallel:

min
0≤L≤1

∑
x

(1
2
||L(x)−d(x)||2 + β|∇L(x)−E(x)|

)
. (12)

Here β = λ/Ls, andL, d,E representLi, di, Ei, respectively. Sim-
ilar with the image denoising problem [20, 21] (note we have extra
constants E(x) in our objective function (12)), we propose a dual
approach to solve (12). More details can be found in [22]. Our key
idea is using Fast Gradient Projection Method (FGP) [21] to solve
the m+ 1 dual problems of (12) in parallel, which is called Parallel
Algorithm with Constrained Total Variation (PACTV). The compu-
tation complexity in each iteration of FGP is O(hw) and the con-
verging rate of FGP is also O(1/k2). Finally, we couple the optimal
L∗i (i=1,. . .,m+1) together, and resize them into a vectorial form
to achieve lveck .

In our implementations, we set λ = 0.01 (Fig. 5(b) with a larger
λ = 0.12), and we also set Ls = 2L(f) to ensure a constant step-
size. And initial value of lvec is zero. The final recovered reflected
layers of (9) should be warped with fi and be enhanced to be visible.
Our experiments illustrate that 100 iterations in ESRA is enough to
achieve the satisfied results. What’s more, our recovering method
launches a general optimization framework and can be extended to
solve other reconstruction problems in [13, 16].
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(a)
Input

(b)
ESRA
124.2s

(c)
SPBSM[16]

6690.6s

(d)
IRLS[4]
238.8s

(e)
Weiss[17]

Fig. 3. Separation results for real photos shown. The elapsed time
of the first three method are listed.

5. EXPERIMENTS
In this section, we show experiments of our algorithm on both syn-
thetic and real superimposed images. Since other separation meth-
ods can not be directly applied for our superimposed images, we
only compare the final recovered methods based on our estimated
parametric transformations and mixing coefficients. To illustrate ad-
vantages of our approach, our recovered results are compared with
other reconstruction methods, like IRLS [4], SPBSM [16], as well
as Weiss [17] method. The settings of SPBSM and IRLS are the
same with in [4, 16], respectively. For color images, we use their
grayscales to estimate and then reconstruct R,G,B channels sepa-
rately. We run all experiments on an Intel i5 PC (3.3GHz CPU, 8GB
RAM) with MATLAB implementation.

The simulation results are shown in Fig. 2 and Fig. 4. Each
mixture is superimposed by the Lena layer and another layer with
different mixing coefficients and planar transformations. The recov-
ered results are given in Fig. 2(d) and Fig. 4(c), which are high qual-
ity with a relative short computation time. Figure 4 gives a special
case when partial reflected scenes are the same between all mixtures.
The transmitted layers’ correlation Ct is 18.4, while the maximum
correlation Cr between any two reflected layers is 7.11 and cannot
be ignored by the independence hypothesis in [16]. However, our
nonparametric hypothesis (2) works for this special case, and our
approach also give the good separation results (shown in Fig. 4(c)).

Figure 3 shows the separation results of different methods on re-
al superimposed images in Fig. 1. Since blind separation method
in [4] is not automatically and needs hundreds of labeled layers’

(a) Four mixtures of two layers

(b) Original layers

(c) Elapsed time: 7.24s RMSE: 8.97

Fig. 4. Separation results for a synthetic example when partial scenes
are the same in all reflected layers.

(a) (b) (c)
Fig. 5. More real mixtures ((c) are supplied by Gai et al. [16]).

edges, we first align the transmitted layers of mixtures and then
use the locations of our extracted layers’ gradients as input labeled
edges. After 15 IRLS iterations, the recovered transmitted layer is
normalized and other reflected layers are achieved by Eq. (1). After
aligned the transmitted layers, Sarel and Irani [6] propose to recov-
er latent layers with Weiss’ approach [17]. Compared with SPBSM
method, our method also achieves good separation results, which is
nearly 35 times faster. Since IRLS [4] can not guarantee convergence
and does not consider constraints on pixel values, the recovered re-
sults are poor. Sarel and Irani [6] only use their estimated gradients
to recover layers’ intensities, their results are sensitive with gradients
errors and have color-bias problem.

Moreover, our approach also gives good performance on oth-
er real superimposed images, shown in Fig. 5. In addition, when
the transmitted layers’ variations do not perfectly conform to planar
transformations in real practice (see Fig. 3,5), our method still gives
good results. It illustrates that our method is robust even if the real
3D variations are just approximately modeled by planar transforma-
tions. Note that besides planar transformation, any other form of
parametric transformations can also be applied in our blind separa-
tion method. The computation time of different methods are given in
Table 1. As is shown, although IRLS runs faster when dealing with
small size mixtures, they obtain poor results. SPBSM can achieve
high quality results. However, its computation time scales poorly
as the number of unknowns increases. Above all, our recovering
method can give good results with a short computation time.

6. CONCLUSION
In this paper, we address the reflection separation problem from
more general superimposed images with different viewpoints, of
which the reflected layers have complicated variations and cannot
be modeled with a uniform parametric transformation. We develop
an efficiently reconstructing method named ESRA and propose a
new hypothesis to theoretically support the blind estimation step.
The experiments on real and synthetic mixtures are promising.
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Mixtures Unknowns ESRA IRLS[4] SPBSM[16]
Figure 2(a) 82k pixels 7.7s 7.0s 378.8s
Figure 4(a) 82k pixels 7.2s 7.2s 575.7s
Figure 5(b) 307k pixels 40.6s 39.7s 1435.2s

Figure 1 420k pixels 40.9s 61.9s 1530.3s
Figure 5(a) 480k pixels 43.7s 68.6s 2137.3s
Figure 5(c) 480k pixels 41.4s 79.6s 2230.2ss

Table 1. The average single-channel recovering time of different re-
covering methods for different-sized mixtures(1k=1000). Fig. 5(b)
uses a larger λ. It has a smaller stepsize in FGP and takes more time.
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