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ABSTRACT

Curvelets were recently introduced as a popular extension of
wavelets. In the curvelet domain the input image is repre-
sented by sets of coefficients representing signal energy in
different scales and angular directions. In this paper an algo-
rithm that searches for optimal tilings for use with the curvelet
transform is introduced. We consider two adaptations: scale
locations, and the number of angular divisions per scale. A
search algorithm that searches for the optimal tiling with re-
spect to denoising performance is introduced. Results show
significant improvement over original curvelet tilings. Tiling
results were also tested with a seismic compressed sensing
recovery problem. A similar performance advantage is re-
ported.

Index Terms— image processing, curvelet transform, de-
noising, seismic recovery, wavelet extension

1. INTRODUCTION

The curvelet transform [1] decomposes an image into a repre-
sentation that emphasizes its directional characteristics across
different scales. This is accomplished through dyadic division
of input data’s frequency content using a pseudo-polar tiling
(Figure 1). This division allows for efficient directional rep-
resentation of edges. The polar version of this tiling is shown
to be optimal [2], in terms of partial reconstruction error, for
representing objects that are smooth except for discontinu-
ities along C2 curves, which have continuous first and second
derivatives. The transform has been used in a wide variety
of image processing applications. Examples include: image
denoising and speckle reduction [3, 4], image fusion [5], and
contrast enhancement [6]. In this paper, we consider adapt-
ing the default curvelet tiling. The location of scales and the
number of angular divisors per scale is going to be optimized
with respect to a cost function chosen to indicate the per-
formance of a curvelet based denoising algorithm. The cost
function used in this work is the reduction in mean squared
error (MSE) obtained from denoising images corrupted with
additive white gaussian noise(AWGN).

The remainder of the paper is organized as follows. In the
next section, a technical overview of the curvelet transform

Fig. 1. Default curvelet tiling[1]

is presented. Section 3 discusses adaptation details and intro-
duces the optimization algorithm. Denoising and compressed
sensing recovery results are shown in section 5.

2. THE CURVELET TRANSFORM

The transform starts by taking the 2D FFT of the given input
image. Next, the FFT is divided into tiles as shown in Fig. 1.
Notice that the inner most level is not directional. Periodic ex-
tension is used in the outer scale. This is necessary since the
FFT implicitly assumes that the left/upper most pixel and the
right/lower most pixel are immediate neighbors. To prevent
discontinuities and high magnitude coefficient values, each
wedge is multiplied by complementary smoothing functions
U1 and U2 around each of its four edges (Fig. 2). Each pixel
value p in the smoothing region between two wedges is mul-
tiplied by U1 and U2. pU1 will be stored with the coefficients
representing the first wedge. Similarly, pU2 will be stored
with the coefficients representing the second wedge.

Perfect recovery from the coefficients is made possible by
ensuring that the smoothing functions are normalized so that
the following property holds:

U2
1 + U2

2 = 1 (1)
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Fig. 2. The two smoothing functions U1 and U2.

Curvelet coefficients are the invese FFT of each smoothed
wedge. Taking the inverse FFT on these non-rectangular
wedges can be performed by a ”wrapping” operation. In this
step every wedge is localized inside a parallelogram (Fig. 3).
Using the periodicity of FFT, the space is tiled with copies of
this parallelogram. The inverse FFT is then taken on the rect-
angle surrounding the origin with the parallelogram’s length
and height. Mathematically a curvelet coefficient at scale j,
angular division l, and location k={k1,k2} is described by:

c(j, l, k) =
1

N2

L1∑
n1=1

L2∑
n2=1

W (Uj,lf)[n1, n2]e
2πi(k1n1/L1+k2n2/L2)

(2)
Where W is the wrapping function, Uj,l is the smoothing

window built for wedge (j,l). L1 and L2 are the horizontal
and vertical number of pixels in wedge (j,l). N is the number
of pixels in image f. The inverse curvelet transform works by
”reversing” forward transform operations.

3. ADAPTING CURVELET TILINGS

3.1. Number of decomposition scales

A scale selection algorithm for selecting the optimal number
of scales was introduced in [7]. The algorithm modifies the
default curvelet choice of the number of scales J. It ensures
that the centered high frequency region that is typically seen
in many images is part of the inner curvelet scale and is not
being smoothed by angular divisions. The optimal number of
scales given by the scale selection algorithm is

J = dlog2(
min(N1, N2)

D
)e (3)

Where D is the length of the square covering the high fre-
quency magnitude values. N1 and N2 are the number of
horizontal and vertical image pixels respectively. The default
curvelet choice for the number of decomposition levels is
given by:

J = dlog2(min(N1, N2)− 3)e (4)

3.2. Optimal number of divisions per quadrant/scale

The optimal number of divisions per scale is found by testing
denoising performance while varying the number of wedges
per quadrant. The number of possible parameter choices is

Fig. 3. Smoothing functions localized on a wedge are shown
with the wedge’s parallelogram shaped support region. Func-
tion values decrease from 1 to 0 as we move from red to blue.

2(J-1) for real data and is 4(J-1) for complex data. Each
one of these parameters is varied in steps of four from 4 to
the maximum desired number of divisions. This independent
optimization is possible, since performance for each quad-
rant/scale pair is local to its region of support. The algorithm
returns the parameter values associated with the best denois-
ing performance.

3.3. Scale locations

Curvelets divide the FFT plane into scales using a non-
adaptive dyadic manner. In this section a search algorithm is
introduced that searches for the optimal scale locations. This
also includes searching for the optimal periodic extension
size that is used for the outer level curvelets. Searching for
the optimal scale locations was done using the Nelder-Mead
simplex method [8]. The parameters to be optimized are
distances to the image center. Scales are not restricted to
be of equal height and length. The number of optimizing
parameters is therefore 2J. Constraints were enforced using
a function that would return a very high MSE value if a vio-
lation instance was observed. This function will also round
parameter values requested by the Nelder-Mead method to
the nearest integer. The enforced constraints are:

1. Outer extension level J is outside the image boundaries.

2. Level J-1 is inside the image boundaries.

3. A minimum number of pixels exists between neighbor-
ing scales.

4. A minimum number of pixels exists between the inner
scale and image center.

5. Scale distances to the origin increase as scale number
increases.

3.4. The global optimization algorithm

A global algorithm combining the previous adaptations is
shown in Fig. 4. It uses a multi-resolution search strategy.
The algorithm starts with selection of the appropriate number
of scale decompositions J. Optimization is done in a hierar-
chical manner consisting of n loops. In each loop optimal
angular and scale locations are found for a downsampled
smoothed version of the image. Angular divisions algorithm
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Fig. 4. The global optimization algorithm

runs once with default scale locations before scale location
search. These angular optimal values are used in the scale lo-
cations search algorithm. Seed values for the scale locations
algorithm in the first iteration are the default scale locations
corresponding the nth loop image size. Next, angular divi-
sion search is performed using the computed optimal scale
locations. After each round, the observed optimal scale loca-
tions are used as a seed for the next iteration. These locations
are rescaled to correspond to the new image size.

4. RESULTS

The developed algorithm was tested on a seismic data set.
Training data used were K = 25 collections of seismic traces.
Each collection is of size 550×100 pixels. The curvelet trans-
form is optimized using this training set. The cost function is
denoising performance as measured by Mean Squared Error
(MSE). The optimal scale locations are found by rounding
the average K optimal results to the nearest integer. Similarly,
optimal angular divisions were found by averaging the K opti-
mal divisions and rounding to the nearest even integer. In the
next section the thresholding based denoising algorithm is de-
scribed along with results showing denoising improvements.

4.1. Denoising

The denoising algorithm used in this work [3] applies a sim-
ple monte-carlo simulation to estimate wedge noise standard
deviation from the estimate of the noise standard deviation
σ corrupting the original image. The local noise level for
wedgej,l σj,l coming from a scale decomposition Sopt and
angular decomposition Aopt is estimated by applying the
curvelet transform with the same scale and angular decompo-
sition to a white noise image with σ noise level. The wedge
dependant noise standard deviation is computed using the
generated coefficients. This local noise estimation is repeated
for few more iterations to reach a reliable estimate. Let ĉ be

(a) (b) MSE=0.992

(c) MSE=0.852 (d) MSE=0.524

Fig. 5. Denoising results (a)-(b) Original and noisy images,
(c) Curvelet denoising (d) Adaptive curvelet denoising

the noisy curvelet coefficients. Restored image coefficients c
are given by hard-thresholding according to:

c = ĉ if |ĉ| ≥ kσj,l (5)

c = 0 if |ĉ| < kσj,l (6)

Where k = 4 for the outer scale, and is equal to three
otherwise. Optimal tilings found were applied to to testing
data and denoising results were compared with the original
curvelet algorithm. Results show considerable quantitative
and visual improvement (Fig. 5).
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(a) MSE=3.282 (b) MSE=1.316

Fig. 6. Recovery of seismic data Fig 5(a) using δ = 0.5 (a)
Using default curvelets (b) Using adaptive tilings

4.2. Recovery from incomplete data

Recent results in compressed sensing theory allows for data
reconstruction from a lower number of samples. This has
been exploited in seismic exploration with the aid of curvelets
to obtain more information content from less number of mea-
surements [9]. The success of adaptive tiling curvelets with
denoising can be related to a better concentration of signal
energy into a small number of coefficients. Therefore, it is
reasonable to assume that better CS based recovery is pos-
sible using the optimal denoising tiles. Experimental results
summarized below verified this assumption.

Assume that the data collected are in the form of vec-
tor b = Sf ∈ Rn. Where f ∈ RN is the vector of complete
data points. S is the sampling matrix that randomly samples
δ = n

N seismic traces. Let C−1(x) be the inverse curvelet
transform of x. The vector of complete measurements f can
be approximated by solving the following program:

f̂ = C−1(x̂) with x̂ = argx min ‖x‖1 subject to SC−1(x) = b
(7)

Numerous algorithms are available that solve the above
optimization problem. The Spectral Projected Gradient al-
gorithm (SPGL1) is used in this study [10]. The recovery
algorithm was tested using a sampling ratio of δ = 0.5. An
example showing the improvements in the recovery process
due to adaptive tiling is shown in Fig. 6.

5. CONCLUSIONS

Algorithms for adapting and searching for optimal curvelet
tilings were introduced in this work. The toolkit allows for
customizing curvelet tilings based on a collection of input im-

ages representing a specific class of data. The algorithm was
shown to succeed in improving curvelet results in seismic de-
noising and seismic data recovery. Similar performance im-
provements are expected in other application areas. The adap-
tive tiling approach taken in this study can also be extended to
other curvelet-like transforms such as shearlets [11], and con-
tourlets [12]. Deciding on the optimal curvelet tilings based
on an individual image FFT content remains an interesting
open problem.
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