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ABSTRACT

We consider a hyperspectral image restoration problem in
which the solution is known to be nonnegative. The image
estimate is obtained as the constrained minimizer of a convex
criterion incorporating prior information on its spatial and
spectral regularity. We previously proposed a fast algorithm
for Tikhonov regularization. Here, we adapt this algorithm to
edge-preserving image restoration.

Index Terms— Deconvolution, Hyperspectral imaging,
Constrained convex optimization, Half-quadratic criterion

1. INTRODUCTION

In many imaging situations, the data are blurred during the
acquisition process (e.g., diffraction-limited blur in fluores-
cence microscopy, or atmospheric turbulence caused by fluc-
tuations in the refractive index of air in remote sensing). Un-
der the common assumption of linear space-invariant blur,
deconvolution methods can be used to restore images with
higher resolution. This paper deals with the deconvolution
of hyperspectral data, i.e. stacks of two-dimensional (2D)
images representing the same scene captured at many over-
lapping spectral bands or channels. Since hyperspectral im-
ages may consist of thousands of pixels spanning hundreds of
channels, it is crucial to select an efficient restoration strat-
egy. The image estimate is usually obtained as the minimizer
of a penalized convex objective criterion, computed as the
weighted sum of: 1) a quadratic data-fidelity term, measur-
ing the goodness of fit between the observed data and the
blurred candidate; 2) a convex regularization term which in-
corporates prior knowledge on the solution, e.g. spatial and
spectral regularity. A quadratic (`2) regularization function
favors the reconstruction of smooth images while a convex,
non-quadratic, differentiable (e.g. a piecewise `2−`1 penalty)
function allows to perform edge-preserving restoration. A
traditional way to address the latter minimization problem
resorts to a majorization-minimization (MM) strategy. The
MM approach consists in majorizing the objective at the cur-
rent solution by a tangent majorant that is easier to minimize.
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In particular, Half-Quadratic (HQ) methods [1, 2, 3] use a
quadratic majoration: the technique amounts to solving a se-
quence of quadratic minimization problems. In this frame-
work, convergence of HQ methods is ensured [4] and these
techniques have been successfully used in the field of image
restoration [5, 6]. HQ techniques are commonly used in an
unconstrained optimization framework. In many applications
such as in computed tomography, the image is known to be
nonnegative. In [7], we proposed a fast algorithm to re-
construct smooth hyperspectral data under a non-negativity
constraint, with a quadratic penalty approach. In this paper,
we propose to combine this method with HQ minimization to
perform fast edge-preserving nonnegative restoration of hy-
perspectral images. This paper is organized as follows. In
section 2, the imaging model is introduced and the problem
is formulated in the framework of constrained optimization.
Section 3 deals with the unconstrained restoration of hyper-
spectral data using HQ minimization. In section 4, we show
how to incorporate the non-negativity constraint into the es-
timation process and lay out the proposed algorithm. Exper-
imental results are presented in section 5 and we conclude in
section 6.

2. PROBLEM STATEMENT

2.1. Imaging model

Let us consider a hyperspectral image of N pixels acquired
in L spectral bands. In each band `, the observed image y` is
obtained from the true image x0

` according to

y` = H`x
0
` + n` (1)

where column vectors y` and x0
` are respectively the ob-

served and true image after lexicographical ordering, H` is
the degradation matrix (corresponding to the 2D convolution
matrix for the channel point spread function) and n` is an
additive noise term accounting for measurement and model
errors, assumed to be white and Gaussian. Denoting the en-
tire hyperspectral image cube by y = [yt

1 . . .y
t
L]

t and the
hyperspectral degradation matrix by
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H =


H1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 HL

 , (2)

(since each image plane is blurred independently), the hyper-
spectral degradation model simply reads:

y = Hx0 + n (3)

The hyperspectral deconvolution problem consists in estimat-
ing the true image x0 given y and H.

2.2. Problem formulation

The nonnegative restoration problem is formulated as the con-
strained minimization problem:

min
x
J (x) s.t. x ≥ 0 (4)

where x is a candidate solution and criterion J (x) writes:

J (x) = ‖y −Hx‖2 +
∑
k

µkRk(x) (5)

where ‖ . ‖ is the Frobenius norm, J0(x) = ‖y−Hx‖2 is the
fidelity-to-data term and

∑
k µkRk(x) is the convex regular-

ization term (which possibly takes several distinct priors into
account). The generic form of Rk(x) is given by

Rk(x) =
∑
i∼j

φk(xi − xj). (6)

where
∑

i∼j denotes summation over i and j that are in the
same clique w.r.t. a spatial or spectral neighborhood system.
For simplicity and without loss of generality, we rewrite this
term as a simple 2D convolution:

Rk(x) =
∑
i

φk({Dkx}i) (7)

where Dk is the 2D convolution matrix for the appropriate
finite-difference operator. The choice of regularization func-
tion φk dramatically impacts the shape of the solution re-
sults: opting for a quadratic (`2) function yields smooth im-
ages while choosing a (`2 − `1) function allows to preserve
the image edges [1, 3]. A common choice is Huber’s function
whose piecewise definition is

φHuber(t; η) =

{
t2 for |t| < η

η(2|t| − η) otherwise (8)

where parameter η controls the shape of the function: it is
quadratic near the origin and linear towards infinity. It is
worth reporting here that many works in recent years deal

with `1 regularization (total variation) to strictly enforce par-
simonious edges: see e.g. [8]. The choice of a (`2 − `1) func-
tion over a (`1) function will be justified below.

Hyperspectral images usually present some degree of sim-
ilarity in spectrally neighboring image planes. Accounting
for this prior can be done by adding a regularization term of
the form (6) with cliques being considered w.r.t. a first-order
neighborhood system in the spectral dimension. Selecting a
quadratic regularization function is usually correct if the spec-
tral sampling of the image is fine enough. Our objective func-
tion thus finally writes

J (x) = ‖y −Hx‖2 + µ1

∑
i

φ1({D1x}i; η) + µ2‖D2x‖2.

(9)

3. UNCONSTRAINED RESTORATION

3.1. Fast restoration of smooth images

In the case of quadratic regularization, the criterion becomes

J (x) = ‖y −Hx‖2 + µ1‖D1x‖2 + µ2‖D2x‖2. (10)

The unconstrained minimization of J is a standard quadratic
problem whose solution is given by

x = (HtH+ µ1D
t
1D1 + µ2D

t
2D2)

†Hty (11)

where † denotes the Moore-Penrose inverse. Because the
number of variables involved in hyperspectral imaging is very
large, the computational cost of a direct NL × NL inver-
sion is usually prohibitive. We proposed in [7] a method that
takes advantage of the properties of 2D convolution matrices
to carry out simpler computations in the Fourier domain using
Parseval’s theorem. The use of 2D FFTs and element-wise
operations yields a method with low complexity, dominated
by N2/2 inversions of L× L matrices.

For some applications (e.g. in image segmentation), the
preservation of edges in the various image planes is critical
and `2 regularization will yield over-smooth images. Unfor-
tunately, if one selects Huber’s function for φ, Parseval’s the-
orem is not applicable anymore. Therefore, performing a fast
optimization of (9) is not straightforward. In the next sec-
tion, we use HQ minimization to combine (`2−`1) regulariza-
tion with the fast Fourier transform computations mentioned
above.

3.2. Edge-preserving restoration

The half-quadratic methodology for image restoration was
originally introduced by Geman and Reynolds (GR) [5] and
Geman and Yang (GY) [6]; for a thorough understanding of
these approaches, see e.g. [1, 2, 4]. In the following, we adopt
GY’s construction for reasons detailed below. The main idea
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consists in replacing the original objective J (x) by an aug-
mented criterionK(x,b) depending on both the original vari-
ables x and a set of auxiliary variables b:

K(x,b) =‖y −Hx‖2 + µ1

∑
i

(1
2

[
{D1x}i − bi

]2
+ ψ(bi)

)
+ µ2‖D2x‖2. (12)

K is obtained from J by majorizing the spatial regularization
term of (9) by:∑

i

(
1

2

[
{D1x}i − bi

]2
+ ψ1(bi)

)
(13)

where φ1 now denotes Huber’s function defined in (8) and
function ψ1 is related to φ1 by the concept of convex dual-
ity; see [1] for details (note however that ψ1 needs not being
computed as we will see). Criterion K(x,b) is said to be
half-quadratic because it is quadratic only w.r.t. x.

In this framework, minimizing J w.r.t x is equivalent to
minimizing K w.r.t. x and b jointly. The procedure is carried
out alternatively:
• the first step consists in minimizing K w.r.t. x given b. The
solution is given by:

x = (HtH+
µ1

2
Dt

1D1+µ2D
t
2D2)

†(Hty+
µ1

2
Dt

1b) (14)

Similar to the evaluation of (11), this solution can be effi-
ciently computed in the Fourier domain using the algorithm
proposed in [7]. Note that the normal matrix to be inverted
does not depend on b contrarily to GR’s approach. This prop-
erty allows to reduce the computational cost of inversions
throughout iterations;
• in the second step,K is minimized w.r.t. b given x. Because
the problem is separable w.r.t. b, i.e. the bi’s do not interact,
it has a closed-form solution:

bi = {D1x}i − φ′Huber({D1x}i; η) (15)

where φ′Huber is the derivative of φHuber.

In order to reduce the computation time in this alternat-
ing scheme in large scale problems, recent research on HQ
minimization study the influence of computing an approxi-
mate minimizer of K w.r.t. x given b (e.g., by using trun-
cated conjugate gradient techniques) on the convergence of
the relaxation algorithm. Our approach is different: here, a
fast computation of the exact solution of this subproblem is
performed in the Fourier domain [7].

4. NONNEGATIVE RESTORATION

4.1. Quadratic penalty method

So far, we have only considered the unconstrained restoration
problem. In [7], we proposed to use the quadratic penalty

method to enforce the non-negativity constraint. The min-
imization scheme is actually similar to half-quadratic regu-
larization: we introduce a set of auxiliary variables s and an
augmented criterion

L(x, s; ξ) = J (x) + ξ‖x− s‖2 (16)

in such a way that the constrained minimization of J is re-
placed by the minimization of L with respect to (x, s). Here,
the non-negativity constraint has been transferred to s. The
quadratic penalty method [9] consists in alternating between
three steps:
• minimization of L w.r.t. x given s and ξ. The solution is
given by:

x = (HtH+ µ1D
t
1D1 + µ2D

t
2D2 + ξI)†(Hty+ ξs) (17)

where I is the NL×NL identity matrix;
• it is easy to see that the minimization of L w.r.t. s given x
and ξ simply consists in a thresholding operation:

s = max(0,x); (18)

• ξ is multiplied by a constant α greater than one to increas-
ingly force the solution towards the feasible domain.

Within this algorithmic framework, x is guaranteed to
converge towards the constrained minimum [9, Theorem
17.1, page 494].

4.2. Proposed algorithm for handling positivity and edge-
preserving restoration

We recall that the proposed method accounts for prior in-
formation on cross-spectral regularity, pixel non-negativity
and the preservation of spatial edges. After combining half-
quadratic regularization and the quadratic penalty method, the
minimization of the augmented criterion w.r.t. x given b and
s yields

x = (HtH+
µ1

2
Dt

1D1+µ2D
t
2D2+ξI)

†(Hty+
µ1

2
Dt

1b+ξs)

(19)
The algorithm is summed up in Table 1.

5. EXPERIMENTAL RESULTS

To simulate hyperspectral data, we use the linear mixing
model widely used in remote sensing because it allows to
account for the similarity between image planes at differ-
ent wavelengths. We use real bacteria images to create two
100×100 abundance maps and synthetic overlapping smooth
Gaussian spectra (endmembers) sampled on 10 points. Each
pixel of the spectral image is then computed as the sum of all
sources weighted by their respective abundance to generate a
100×100×10 data stack. Image degradation is simulated by
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— Compute the 2D Fourier Transforms of all observed im-
age planes y`, PSFs H` and operator D1. Set ξ(1) = 1,
α > 1, τ < 0, M > 0 and initialize s and b to zero.
— Repeat:

(a) Repeat for M iterations:
– Compute x in the Fourier domain using (19).
– Update b using (15).
– Update s using (18).

(b) Update ξk+1 = αξ(k).

until some stopping criterion is met, e.g. the lowest-valued
pixel of x is greater than some tolerance threshold τ .

Table 1. Proposed algorithm

convolving each channel with a 2D Gaussian PSF with an ar-
bitrary fixed kernel size and standard deviation and by adding
independent Gaussian noise. The approximation of physi-
cal PSFs by 2D Gaussian functions is actually reasonable in
numerous cases, including fluorescence microscopy [10] and
atmospheric turbulence [11]. Hyperparameters µ1 and µ2 are
selected empirically in the restoration phase. Operator D1 is
a Laplacian filter and D1 is the 1D [−1, 1] derivative filter
in the spectral dimension. A data set example is provided in
figure 1. Our experiments (unsurprisingly) confirm that edges
in the image are better preserved by `2 − `1 regularization.
The running times for our algorithm with `2 − `1 and `2
regularization were respectively 55s and 13s for a MATLAB
implementation on a 2.4 Ghz Intel Core 2 Duo processor with
a RAM of 4 gigabytes. In our experiments, we empirically
set the number of iterations in the inner loop to M = 5 to
achieve convergence. Future work could include a technical
analysis on determining the minimum value of parameter M
to minimize running times while preserving convergence of
the method.

6. CONCLUSION

In this paper, we proposed an algorithm to restore hyperspec-
tral data while preserving spatial edges and accounting for
spectral smoothness and pixel non-negativity. The method
was originally based on the fast inversion algorithm derived
in [7] for smooth image restoration. We have shown that
it can be adapted to non-quadratic regularization at the cost
of performing repeated fast inversions. Perspectives include
comparisons with other constrained optimization methods,
namely large-scale interior point algorithms [12].
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