
 
 

Fig.1. The illustration of the proposed method: Given an observed orange 
image (whose real color is red), conventional color correction methods 
first perform illuminant estimation (yellow), and then calibrate the 
deviated image color via a color transformation model. Our approach, on 
the other hand, directly creates a preliminary color-corrected image 
(dark red), which is utilized to calculate the illuminant color through a 
least square formulation. The estimated illuminant is then fed into the 
color transformation model to obtain the refined color-corrected result. 
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ABSTRACT 
 
According to the observation that an image under the canonical 
light has a nearly neutral chromaticity distribution, an efficient 
three-step color correction approach is proposed: First, a 
preliminary color-corrected image is generated by linearly shifting 
the chromaticity distribution of an input image towards the neutral 
point. Then, a least square approximation formulation is presented 
to derive the illuminant color from the preliminary color-corrected 
image. Finally, based on the derived illuminant color and the Von 
Kries model, a refined color-corrected image can be obtained. 
From the experimental results on the widely-used SFU image 
dataset, the proposed approach could achieve comparable or even 
better performances against other well-known methods. In addition, 
several web images are examined to further demonstrate the 
effectiveness of our approach. 
 

Index Terms— Illuminant estimation, Relative Neutral 
Region, Least square approximation 
 

1. INTRODUCTION 
 

With the fast development of technology, taking pictures has 
gradually become a common activity in our daily lives. The pixel 
values captured in an image, however, may drastically vary under 
different illuminant colors, and hence cannot faithfully display the 
genuine colors of a scene. This problem not only degrades the 
image quality, but also makes the subsequent applications such as 
object recognition more challenging. Therefore, how to achieve 
color constancy [1] under varied illuminant colors has attracted 
critical attention in image processing and computer vision. 
    There are generally two classes of color constancy methods: 
One aims at an illuminant-invariant image representation [2], [3]; 
the other seeks to calibrate the color deviation of an image, also 
called color correction in the existing literatures [4]-[9]. This 
paper mainly focuses on the second category.  

In the previous work of color correction, the illuminant color is 
always estimated at first for subsequent color transformation (e.g., 
via the Von Kries model [10]). Unfortunately, illuminant 
estimation has been proved as an ill-posed problem [1]; therefore, 
all the techniques to achieve it rely on specific assumptions of the 
image properties [1] such as the restricted gamuts, the color 
distribution, and the possible light sources in an image. These 
assumptions, however, are easily violated in real world images, 
thus resulting in poor illuminant estimation. To alleviate the above 
defects, we propose a simple yet effective color correction 
algorithm, where the illuminant color is estimated through a 
reversed fashion (as illustrated in Fig. 1).  

Our algorithm is based on the observation summarized in Fig. 2: 
An image under the canonical light (i.e. white light) has a nearly 
neutral chromaticity distribution (on the a*b* plane of the L*a*b* 
color space [11]). To attain this property in an image under the 
non-canonical light, we linearly shift the chromaticity distribution 
of that image towards the neutral point (a*= 0, b*= 0), leading to a 
preliminary color-corrected image that is robust against varied 
illuminant colors. Unfortunately, the constraint brought by the 
linear shift operation — the chromaticity distribution of the 
corrected image is just a globally shifted version of the input 
image — is not satisfied in general cases (as be mentioned in 3.3). 

In order to release the constraint, a least square approximation 
formulation is presented to derive the illuminant color from the 
preliminary color-corrected image. The estimated illuminant color 
is then fed into the standard Von Kries model to generate the 
refined color-corrected image. Since the Von Kries model has been 
claimed and examined as a suitable model for calibrating the 
image color based on the estimated illuminant color [1], the 
resulting color-corrected image would be more plausible than the 
one achieved by direct chromaticity shifting. Experimental results 
on the benchmark SFU image set and several web images (under 
the non-canonical light) demonstrate the effectiveness of the 
proposed approach on the illuminant estimation and color 
correction tasks. The remainder of this paper is organized as 
follows: Section 2 reviews the previous work of color correction, 
and Section 3 presents the details of our proposed method. The 
experiments and the conclusion are included in Sections 4 and 5. 
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2. RELATED WORK 
 

Algorithms of color correction generally consist of two steps: The 
first step estimates the illuminant color from the input image; the 
second step transforms the deviated image color into the authentic 
color according to the estimated illuminant. Among all kinds of 
color transformation models, the Von Kries model [10] has 
become the standard one in the literature; hence, the performance 
of color correction is usually measured by the accuracy of 
illuminant estimation. In the following, several representative 
illuminant estimation algorithms are reviewed. 
    In [4], Land et al. proposed the most well-known assumption of 
illuminant estimation, the white patch assumption, which supposes 
the existence of highlight patches in a scene that totally reflect the 
illuminant. The max-RGB algorithm [4], a practical 
implementation of Land’s assumption, then takes the maximum 
intensities in the color channels as the illuminant color components. 

The general gray world hypothesis [5] is according to another 
assumption: The pth-Minkowsky norm of a scene after local 
smoothing is achromatic. In other words, the normalized pth- 
Minkowsky norms of all pixels in each color channel could be 
seen as the illuminant color. Slightly different from the general 
gray world hypothesis, the gray edge hypothesis [5] conjectures 
that the pth-Minkowsky norm of the derivatives (computed in an 
image) is achromatic; hence, it takes the normalized pth-
Minkowsky norms over all derivative values in each color channel 
to be the illuminant. 

Based on the assumption that only a limited number of colors 
can be observed from a given illuminant source, the gamut 
mapping method [6] and its improvements [7], [8] attempt to map 
the input gamut into the canonical gamut, which is learned through 
a tedious process. The concept of learning is also exploited in the 
color-by-correlation algorithm [9], which links the possible image 
colors with possible scene illuminants by a correlation matrix. 
 

3. THE PROPOSED ALGORITHM 
 

In this section, the proposed method is described in detail. In 3.1, 
we introduce the observations for designing our algorithm; in 3.2, 
the generating process of the preliminary color-corrected image is 
described. Finally in 3.3, the least square approximation 
formulation for illuminant estimation is presented. 
 

3.1. The Key Observations 
 

The observations for designing the proposed approach is as follows: 
When a scene is pictured under different light sources, the pixel 
values are affected mainly in the chromaticity parts (a*, b* 
components in the L*a*b* color space) rather than in the lightness 
part. Moreover, the chromaticity distribution of an image under the 
canonical light (or an image corrected by the ground truth 
illuminant) is nearly neutral. These phenomena are shown in Fig. 2. 
 
3.2. Color Correction via Chromaticity Shifting 
Based on the two observations mentioned above, a simple color 
correction approach by linearly shifting the chromaticity 
distribution of an image towards the neutral point (a*= 0, b*= 0) is 
presented. That is, through shifting the a*, b* components of each 
pixel with certain quantities measured from the chromaticity 
distribution, the color-corrected image could be achieved. To 
determine the shifting quantities, a centroid-like point has to be 
defined for representing the overall chromaticity distribution. In 
our implementation, we select the median values of a* and b* to be 

the representative point because of its simplicity and robustness 
against outliers. 

Besides the consideration of outliers, it is also shown in [12] that 
pixel values near the neutral point are more sensitive to the 
variation of illuminant colors. Namely, these pixels are more 
informative for color correction. Hence, instead of taking the 
median values over all the pixels in an image, we propose to 
discover the relative neutral region (RNR) at first, and compute the 
median values of a* and b* — denoted as the representative 
point — only from pixels within this region. The definition of 
RNR is described in Table 1, and in Fig. 3 (b) and (d), the RNR of 
a yellowish image is illustrated (in gray).  
    With the representative point, the chromaticity distribution of 
the input image could be linearly shifted by moving this 
representative point to the neutral point, leading to a (preliminary) 
color-corrected image, as shown in Fig. 3 (c). 
 

3.3. Illuminant Estimation via Least Square Approximation 
 

Color correction via chromaticity shifting apparently alleviates the 
influence of illuminant colors (as shown in Fig. 3). Nevertheless, 
the constraint led by this approach — the chromaticity distribution 
of the color-corrected image in Fig. 3 (d) is just the globally 
shifted version of the input image in Fig. 3 (b) — is generally not 
satisfied between the input image and the ground truth image 
(obtained with the ground truth illuminant), which can be seen in 
Fig. 2 (c) and (d). Namely, the distribution shown in Fig. 2 (d) 
could not be attained by simply shifting the one in Fig. 2 (c): that 
is why we call the output of chromaticity shifting the preliminary 
color-corrected image. 

 

Table 1: The definition of the relative neutral region (RNR) 

 Denote pi as the chromaticity vector  ( ),  ( )* *a i b i of pixel i. 

 Denote m as the maximum chromaticity vector of an image: 

 max ( ) ,max ( )* *

i i
a i b im  

 Denote n as the neutral point (a*, b*) = (0, 0). 

 Pixel i belongs to the RNR only if
22i s  p n m n , where s is an 

adjustable parameter (s = 0.5 in our implementation). 

   
     (a)                                                     (b) 

 

   
                      (c)                                                    (d) 
Fig.2. The key observations for designing our color correction algorithm: 
(a) An example image with the yellowish color deviation. (b) The ground 
truth image (achieved by the ground truth illuminant). (c)(d) are the 
chromaticity distributions (blue dots) on the a* b* plane of (a)(b); the red 
point is the median chromaticity. Clearly, an image under the canonical 
light like (b) has a nearly neutral distribution; i.e. the median chromaticity 
is very close to the neutral point (a*= 0, b*= 0). 
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To release this constraint, the conventional framework of color 
correction, illuminant estimation + color transformation, is taken 
into account for refining the color correction result. Specifically, 
we try to calculate the illuminant color from the preliminary color-
corrected image, and then adopt the standard Von Kries model for 
generating the refined color-corrected image. In our 
implementation, we model the illuminant estimation process as an 
approximation problem. Namely, the illuminant color that leads to 
the color-corrected result (through the Von Kries model) most 
similar to the preliminary color-corrected image (by the square 
error) is selected. 

Denote the canonical and the estimated illuminant colors as eC 
and eE, which are both 3-dimensional vectors, the Von Kries 
model calibrates each color channel j (in the RGB space) of the 
input image individually based on the corresponding illuminant 

component j
Ee : 

 *( ) ( ) ,  { , , },j j
j j ECx i x i e e j R G B                      (1) 

where ( )jx i  and *( )jx i are the color component j of pixel i in the 

input and the output images; the canonical illuminant eC is set as 
[1 3 ,1 3 ,1 3]T in general. Hence, each illuminant component 

j
Ee  can be computed separately via the least square optimization 

problem below: 

 
  2

1

argmin ( ) ( ) ,  { , , },
N

j j j
E j j Cje i

e y i x i e e j R G B


           (2) 

where yj (i) indicates the color element j of pixel i in the 
preliminary color-corrected image; N represents the number of 
pixels in the input image. By rewriting xj and yj as the N-
dimensional vectors recording all the color component j in the 

input and the preliminary corrected images, j
Ee can be achieved by 

the following formula: 

   1
,  { , , }.j j T T

E j j j jCe e j R G B


  x y x x                    (3) 

With the least square formulation in (2) and the solution in (3), 
the illuminant color eE can be derived from the preliminary color-
corrected image. In Fig. 3 (e) and (f), the refined color-corrected 
results via eE and the Von Kries model are presented. Clearly, the 
constraint of chromaticity shifting has been effectively released; 

the refined color-corrected results are much more similar to the 
ground truth image and chromaticity distribution in Fig. 2 (b), (d). 
 

4. EXPERIMENTAL RESULTS 
 

In this section, the performance of our approach is evaluated on the 
benchmark SFU real world image set [13] and some web images 
pictured under different light sources. Several color correction 
algorithms by first estimating the illuminant color are compared, 
such as the max-RGB method (MR) [4], the general gray world 
hypothesis (GGW) [5], the first order and the second order gray 
edge hypotheses (GE1, GE2) [5]. Because our approach requires 
no learning phase, the gamut mapping [6]-[8] and the color-by-
correlation methods [9] mentioned in Section 2 are not compared. 
The parameters of GGW, GE1, and GE2 are set based on [5]. 

Two criteria are used for performance evaluation on illuminant 
estimation and color correction respectively. First, we measure the 
discrepancy between the estimated and the ground truth illuminant 
colors eE and eG by the popular angular error angled [4]: 

1cos ,G E
angle

G E

d   
   

 

e e

e e
                           (4) 

where   means the L2 norm. Second, we assess the goodness of  

color correction by calculating the chromaticity differences CD (on 
the a*, b* components) between the color-corrected images and the 
ground truth images (obtained by the ground truth illuminants): CD 

 is measured by the root mean square error. 
 

4.1. Experiments on the SFU Image Database 
 

The SFU image dataset [13], provided with the ground truth 
illuminant colors, is composed of 15 video clips. Since images 
within the same video clip have high correlations, we sample the 
images with the interval of 10 in each clip, resulting in a subset of 
totally 1128 images for the whole dataset. 
    The illuminant estimation results on the SFU image subset are 
shown in Table 2, where the median, mean, and standard deviation 
(STD) of the angular errors (Unit: degree) are firstly calculated in 
each video clip, and then averaged over the 15 clips. In this way, 
the influence of each clip could be balanced. As presented, the 
proposed approaches (with or without the RNR) outperform other 
compared methods both in the median and mean angular errors. 

 
Fig.3. The flowchart of our approach: The three steps are marked with dashed blocks; the relative neutral region (RNR) is illustrated in gray in (b) and (d). 
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Besides, the relative neutral region (RNR) is indeed helpful to 
further reduce the angular errors. The color correction 
performances on the SFU dataset are listed in Table 3, where both 
the preliminary (via chromaticity shifting only) and the refined 
results (with illuminant estimation and Von-Kries model) are 
involved. As shown, our approach (with the RNR and refinement) 
works better than other algorithms in terms of the median and 
mean errors on the chromaticity components. And similar to the 
illuminant estimation results, the errors with the RNR are still 
lower than the ones without the RNR, justifying the effectiveness 
of RNR on both the color correction and illuminant estimation 
tasks. Furthermore, the performance gain achieved by the 
refinement process (in 3.3) does significantly reduce the color 
correction error, demonstrating our attempt to release the 
constraint led by the simple chromaticity shifting method. 

In Fig. 4, the color correction results by applying different color 
correction algorithms on images in the Deer_Lake video clip are 
displayed. As shown, our approach (with the RNR and refinement) 
can effectively remove the influence of the yellowish illuminant. 
 

4.2. Experiments on Web Images 
In this subsection, we take a further step to compare our approach 

(with refinement and the RNR) to other methods on web images 
taken under different light sources. Because the web images are 
usually not provided with the ground truth illuminants as well as 
the ground truth images, we only show the color-corrected results 
in Fig. 5. As presented, the proposed approach is more effective 
than other methods on reducing the influence of illuminant colors. 
 

5. CONCLUSION 
 

In this paper, a simple yet effective color correction algorithm is 
proposed. By linearly shifting the chromaticity distribution of an 
image towards the neutral point, a preliminary color-corrected 
result (accompanied by a strong constraint in the chromaticity 
distribution) could be attained. To release the constraint, we 
present a least square approximation formulation to derive the 
illuminant color, which is then fed into the Von Kries model for 
refinement. The experimental results demonstrate the effectiveness 
of our approach on both illuminant estimation and color correction. 
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