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ABSTRACT
Recovery of original images from degraded and noisy observations
is considered an important task in image processing. Recently, a
Piece-wise Linear Estimator (PLE) was proposed for image recov-
ery by using Gaussian Mixture Model (GMM) as a prior for image
patches. Despite having much lesser computational requirements,
this method yields comparable or better results when compared with
the widely used sparse representation techniques for image restora-
tion. In many situations, we might have access to multiple degraded
copies of the same image, and would like to exploit the correlation
among them for better image recovery. In this work, we extend the
GMM based method to the multiple observations scenario, where
we estimate the original image by utilizing the collective informa-
tion available from all degraded copies.

Index Terms— Image restoration, multiple observations, Gaus-
sian mixture model, piece-wise linear estimator.

1. INTRODUCTION

Image restoration techniques attempt to solve the problem of recov-
ering an original image x, from a degraded/noisy observation y. In
many such problems, image degradation can be considered as the ef-
fect of a non-invertible linear operator acting on the original image
x to produce y. Common examples are random masking, subsam-
pling, convolution (blurring) etc. We can write the observed image
y as

y = Ax + n (1)
where, A is the degradation operator and n is the zero mean additive
white Gaussian noise. An image restoration technique then attempts
to solve a linear inverse problem to recover x from y.

Recently, sparse representations of natural images over a suit-
able overcomplete dictionary have been used extensively in differ-
ent image restoration tasks[1, 2, 3, 4]. Different dictionary learning
algorithms [5, 6] can be used to learn an overcomplete dictionary
that is better adapted for the sparse representation of natural images.
Such learnt dictionaries often give better results in image inverse
problems, when compared to standard dictionaries. Given a dictio-
nary, sparse representations are found using non-linear sparse esti-
mation techniques such as l1 minimization or Matching Pursuit (MP)
algorithms. However, poor coherence properties and full degree of
freedom in choosing dictionary atoms, can make these algorithms
imprecise and unstable. Moreover, both the sparse coding and dic-
tionary learning algorithms are computationally complex, creating
difficulties in their practical implementations.

A different approach for solving general image restoration prob-
lems assumes Gaussian mixture model (GMM) as a prior for image
patches[7, 8]. In [7], patches are estimated by maximizing the like-
lihood using a GMM prior, where the GMM parameters are learnt

apriori from a large collection of natural image patches. In [8], a
MAP-EM framework was developed to estimate the patches and to
update the Gaussian model parameters in an iterative manner. GMM
prior for image patches makes the signal estimation piece-wise linear
(PLE), and can be implemented with a set of Wiener filters. Despite
requiring considerably less number of computations, this method
gives comparable or better results when compared with state of the
art techniques. In this work, we study the problem of image restora-
tion from multiple copies. The rest of this paper is arranged as fol-
lows. In section 2, we give a brief review of previous works in this
area and a description of the GMM MAP-EM algorithm for image
restoration from single observation. Section 3 explains the proposed
algorithm which extends the original GMM algorithm into multiple
observations. Experiment results are discussed in section 4, and sec-
tion 5 concludes the work.

2. RELATION TO PREVIOUS WORK

In some situations, we may have multiple observations of the same
image, where each of the observations is degraded independently.
A common example is a denoising problem with multiple noisy ob-
servations of the same image. An algorithm for image denoising
from multiple observations was proposed in [9] using a combina-
tion of averaging and wavelet coefficient thresholding. But, simple
averaging techniques does not effectively utilize the correlation of
signals among multiple observations. A technique which exploits
the correlation among multiple signals was reported in the sparse
representation literature [10, 11, 12], and uses simultaneous sparse
representations of multiple measurement vectors. This method was
applied for signal denoising, but was not used for image recovery
from multiple images in general. In [13], a different technique using
joint sparsity was proposed for image denoising from multiple ob-
servations contaminated with sparse noise. In this work, we extend
the GMM based MAP-EM framework proposed in [8], to incorpo-
rate multiple observations. This new method utilizes the correlated
information from all degraded observations to estimate the original
image.

We now briefly describe the MAP-EM algorithm proposed in [8]
for image restoration from a single degraded/noisy observation. In
this algorithm, an image is split into patches of size

√
N ×

√
N and

the patches are lexicographically ordered as vectors xi ∈ RN , i =
1, 2, ...I , where I is the total number of patches. For each patch
xi of the original image, the corresponding degraded noisy patch yi

can be written using equation (1) as

yi = Aixi + ni, i = 1, 2, ..I (2)

where, Ai denotes the degradation matrix operating on ith patch
and ni the zero mean additive white Gaussian noise vector added
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to ith patch. GMM prior for image patches assumes that each
patch xi is drawn independently from a Gaussian model indexed
by ki from a mixture of K Gaussians. Gaussian parameters are
denoted by {(µk,Σk)}1≤k≤K . Given the degraded noisy observa-
tions {yi}1≤i≤I , we have to find the estimates of the original image
patches {xi}1≤i≤I . A MAP-EM algorithm was developed to solve
this problem in an iterative manner.
E-step: Assuming that the Gaussian parameters are known from the
previous iteration, the E-step computes the MAP estimate x̃i and
the best Gaussian model k̃i for all patches, i = 1, 2, ..., I . Signal
estimation and model selection is done by maximizing the log a-
posteriori probability log p

(
xi|yi, Σ̃k

)
, first over xi and then over

all Gaussian models. Since we can always perform a mean centering
on every Gaussian cluster with respect to the cluster means, we as-
sume that the Gaussian means {µk}1≤k≤K are all zero. For a fixed
Gaussian model k, the MAP estimate is computed as

x̃k
i = Σ̃k

(
AT

i AiΣ̃k + σ2Id
)−1

AT
i yi (3)

Once the estimates x̃k
i are computed with all Gaussian models, the

best model for ith patch is selected as

k̃i = arg min
k

(∥∥∥Aix̃
k
i − yi

∥∥∥2
2
+ σ2

(
x̃k
i

)T
Σ̃
−1
k x̃k

i

+σ2log
∣∣∣Σ̃k

∣∣∣) (4)

After selecting the model k̃i, estimate of the ith patch is computed
with the selected model as x̃i = x̃ki

i .
M-step: Assuming the estimate x̃i and the Gaussian model associ-
ation k̃i are known for all patches 1 ≤ i ≤ I , the M-step updates
the parameters of all Gaussian models. Parameters of kth Gaussian
model is estimated by maximizing the likelihood of observation of
all patches associated with this model. The ML estimate results in
the empirical estimates of Gaussian parameters,

µ̃k =
1

|Ck|
∑
i∈Ck

x̃i, Σ̃k =
1

|Ck|
∑
i∈Ck

(x̃i − µ̃k)
T (x̃i − µ̃k) (5)

where, Ck denotes the set of all patches associated with kth Gaussian
model.

3. MAP-EM ALGORITHM FOR MULTIPLE IMAGES

In multiple observations, we haveL degraded and noisy observations
y1,y2, ..yL of an image x satisfying,

yj = Ajx + nj , j = 1, 2, ...L (6)

where Aj is the degradation matrix operating on jth image and nj is
the additive zero mean Gaussian noise. Splitting all observed images
into patches as in equation (2), we can write

yij = Aijxi + nij , i = 1, 2, ..., I, j = 1, 2, ..., L (7)

where yij denotes ith patch of the jth observation, Aij is the cor-
responding degradation operator and nij is the additive white Gaus-
sian noise vector added to ith patch of the jth image. Given all
observations yi1,yi2, ....yiL corresponding to a patch i, our prob-
lem is to compute the best estimate of the original image patch x̃i.
We again use the MAP-EM framework as in the single observation
case. In the E-step, for every patch, we compute the MAP estimate

from all given observations with a fixed Gaussian model k. Then the
best Gaussian model is selected in such a way that it describes all
observations corresponding to a patch. In the M-step, we update the
model parameters of a Gaussian by maximizing the likelihood the
estimated patches associated with that Gaussian model.
E-step: Given all observations yi1,yi2, ...,yiL of the ith patch,
assuming that the Gaussian parameters are known from the previ-
ous iteration, we compute the MAP estimate by maximizing the
log a-posteriori probability log p

(
xi|yi1,yi2, ...,yiL, Σ̃k

)
. MAP

estimates x̃k
i are computed independently with all Gaussians k =

1, 2, ...K and the best Gaussian model k̃i is selected. Estimate of
the ith patch is then computed using the selected Gaussian model.(

x̃i, k̃i
)

= arg max
u,k

[
log p

(
u|yi1,yi2, ...yiL, Σ̃k

)]
= arg max

u,k

[
log p

(
yi1,yi2, ...yiL|u, Σ̃k

)
+log p

(
u|Σ̃k

)]
= arg max

u,k

[
L∑

l=1

log p
(
yil|u, Σ̃k

)
(8)

+log p
(
u|Σ̃k

)]

Equation (8) follows from the independence of observations. Using
the Gaussian pdf for image patches (µ = 0,Σ = Σk), and noise
vector (µ = 0,Σ = σ2Id), we have,

(
x̃i, k̃i

)
= arg min

u,k

[
L∑

l=1

(
‖yil −Ailu‖22

)
+ σ2uT Σ̃

−1
k u + σ2log

∣∣∣Σ̃k

∣∣∣] (9)

Minimization is first done over u and then over k.

x̃k
i = arg min

u

(
L∑

l=1

‖Ailu− yil‖22 + σ2uT Σ̃
−1
k u

)
(10)

Differentiating equation (10) and setting the result to zero, we have,

x̃k
i =

(
L∑

l=1

AT
ilAil + σ2Σ̃

−1
k

)−1 L∑
l=1

AT
ilyil

= Σ̃k

(
L∑

l=1

AT
ilAilΣ̃k + σ2Id

)−1 L∑
l=1

AT
ilyil

= Σ̃k

(
L∑

l=1

AT
ilAilΣ̃k + σ2Id

)−1

[Mi] [vi] (11)

where, [Mi] =
[
AT

i1A
T
i2...A

T
iL

]
and [vi] =

[
yT
i1y

T
i2y

T
iL

]T
. Equa-

tion (11) can be written in the form of a linear estimate using Wiener
filter as

x̃k
i = Wk,i [vi] (12)

where,

Wk,i = Σ̃k

(
L∑

l=1

AT
ilAilΣ̃k + σ2Id

)−1

[Mi] (13)
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Once the estimates x̃k
i are computed with all Gaussian models k =

1, 2, ...,K, the best Gaussian model for the ith patch is selected us-
ing

k̃i = arg min
k

(
L∑

l=1

∥∥∥Ailx̃
k
i − yil

∥∥∥2
2

+σ2
(
x̃k
i

)T
Σ̃
−1
k x̃k

i + σ2log
∣∣∣Σ̃k

∣∣∣) (14)

Estimate of the ith patch is then computed using the selected Gaus-
sian model as,

x̃i = x̃k̃i
i (15)

As in [8], the E-step consists of a linear estimate of patches and a
non-linear best model selection, together forming a Piecewise Lin-
ear Estimation (PLE). Implementation of E-step involves a set of
Wiener filters which considerably reduces the computational com-
plexity when compared with the sparse representation based meth-
ods.
M-step: In the M-step, we assume that the estimates x̃i and selected
Gaussian model k̃i are known for all patches 1 ≤ i ≤ I . Then the
parameters of kth Gaussian are updated by maximizing the likeli-
hood of all the estimated patches associated with the same Gaussian.
Let Ck be the ensemble of estimated patches associated with kth

Gaussian. Then the ML estimates of model parameters can be cal-
culated as(

µ̃k, Σ̃k

)
= arg max

µk,Σk

log p
(
{x̃i}i∈Ck |µk,Σk

)
(16)

With Gaussian model, the ML estimates result in the corresponding
empirical estimates,

µ̃k =
1

|Ck|
∑
i∈Ck

x̃i, Σ̃k =
1

|Ck|
∑
i∈Ck

(x̃i − µ̃k)
T (x̃i − µ̃k) (17)

MAP-EM algorithm is initialized by the same method proposed in
[8], where the covariance matrices are initialized to capture the di-
rectional regularities such as edges and contours contained in natural
images.

4. EXPERIMENT RESULTS

This section describes the experiments conducted to evaluate the
performance of the proposed algorithm in some image restoration
tasks with multiple observations. We consider two common image
restoration applications, namely, image denoising and image inpaint-
ing.

In image denoising, AWGN noise is added independently to
multiple copies of a test image. The proposed algorithm is then used
to recover the original image from these multiple noisy observations.
We first compare our results with the results of the algorithm de-
scribed in section 2, which uses only a single observation for image
recovery. We denote this algorithm by Single Observation GMM
(SO-GMM). As has been tried in literature with multiple observa-
tions, we next use an averaged version of SO-GMM to compare our
results. In this method, SO-GMM algorithm is used to recover the
original image independently from different copies and in every it-
eration, results from different observations are averaged to get the
recovered image for that iteration. We denote this second method
as SO-GMM-AVG. AWGN noise variance σ2 is set to 100, and the
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(b) Number of observations L = 20

Fig. 1: PSNR Evolution in Image Denoising

experiments are repeated for two different number of multiple obser-
vations, L = 10 and L = 20. In all our experiments, we have used
a 128× 128 portion of gray level Lena image.

Figures 1a and 1b show the evolution of PSNR in successive it-
erations of the MAP-EM algorithm for L = 10 and 20 respectively.
From figure 1a, we can see that the proposed method achieves a
PSNR of 39 dB from the second iteration onwards which is 6 dB
more than the single observation SO-GMM. Due to noise averaging,
SO-GMM-AVG gives a better PSNR of 37 dB, with 4 dB improve-
ment compared to the SO-GMM method, but it is still 2 dB less
than the proposed method. Figure 1b shows the case with L = 20.
Since the number of observations are increased from 10 to 20, both
the proposed method and SO-GMM-AVG give a significantly better
PSNR compared to the SOGMM algorithm. In this case, the pro-
posed method is 8.3 dB better than the SO-GMM method and 4 dB
better than SO-GMM-AVG.

Next we see the performance of our algorithm, in an image in-
painting problem with multiple observations. In this case, multi-
ple copies of a test image are masked independently with different
random masks. Then the proposed algorithm is used to recover the
original image from these multiple observations. Results are com-
pared in the same way as it was done in image denoising. SO-GMM
method recovers the original image by using only a single obser-
vation among multiple copies, whereas the SO-GMM-AVG method
independently performs inpainting on all observations, and the re-
sults are averaged in every iteration. Percentage of missing pixels
is set to 50% for all images and the experiment is repeated for two
different number of observations L = 10, 20. Figures 2a and 2b
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Fig. 2: PSNR Evolution in Image Inpainting

give the PSNR improvement in successive iterations of the inpaint-
ing algorithm. When the number of observations L = 10, it can be
seen from figure 2a, that the proposed method is stable at a PSNR
of approximately 45 dB from the first iteration itself. This is 8 dB
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higher than the SO-GMM-AVG method and 11 dB higher than the
SO-GMM method. We can see that the SO-GMM-AVG method im-
proves only by 3.2 dB when compared to SO-GMM. When the num-
ber of observations goes from 10 to 20, as can be verified from figure
2b, the proposed method significantly improved the PSNR to reach
48.46 dB. We note that the performance of SO-GMM-AVG has not
changed when the number of observations is increased.

(a) Original Image (b) A Masked copy (c) SO-GMM

(d) SO-GMM-AVG (e) Proposed Method

Fig. 3: Inpainting Results

To see how the proposed method improves the image recovery
in the case of severely degraded images, consider the results of an
inpainting problem shown in figure 3. Original image is degraded
by masking about 80% of pixels. SO-GMM method recovers the
image, but most of the fine details like thin edges are blurred. This
can be clearly visible on Lena’s hat at the top of the image. The
recovered image using SO-GMM-AVG appears to be overly smooth
when compared to the original image, and blurring of fine details is
more compared to the SO-GMM method. But we can see that the
proposed method recovers an image which is close to the original
image and preserves most of the fine details.

5 10 15 20
25

30

35

40
SO-GMM-AVG

SO-GMM

Prop.Method

Input PSNR

No.of observations

PS
N

R
(d

B
)

PSNR Vs No.of observations

Fig. 4: PSNR vs Number of observations

Figure 4 shows the improvement in PSNR with the increase in
number of observations, L. Since SO-GMM method uses only a
single observation, its performance is same for all values of L and
is shown for a comparison. When L = 1, naturally all algorithms
have the same performance. As the number of observations increases
from 1 to 5, both the proposed method and SO-GMM-AVG shows
almost same performance. As L is increased further, performance

of the proposed method becomes better, and improves significantly
with each observation. In the case of SO-GMM-AVG, improvement
in PSNR is almost constant beyond L = 10.

5. CONCLUSION

In this work, we have addressed the problem of utilizing multiple
degraded observations of an image for better image restoration. Ex-
tending the work in [8], we have proposed an algorithm which uti-
lizes the correlated information from all different observations to
produce better reconstruction quality. Different experiments con-
ducted to evaluate the performance demonstrate effectiveness of the
algorithm in using correlation among multiple observations. As a fu-
ture work, we consider to extend the proposed algorithm into more
general situations as considered in [14]. This includes reconstruc-
tion from multiple images which are not perfectly registered due to
camera motion and the effect of different exposure time for different
images.

6. REFERENCES

[1] M. Elad and M. Aharon, “Image denoising via sparse and
redundant representations over learned dictionaries,” IEEE
Transactions on Image Processing, vol. 15, no. 12, pp. 3736
–3745, Dec. 2006.

[2] Y. Lou, A. L. Bertozzi, and S. Soatto, “Direct sparse deblur-
ring,” Journal of Mathematical Imaging and Vision, vol. 39,
no. 1, pp. 1–12, Jan. 2011.

[3] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for
color image restoration,” IEEE Transactions on Image Pro-
cessing, vol. 17, no. 1, pp. 53 –69, Jan. 2008.

[4] J. Yang, J. Wright, T.S. Huang, and Y. Ma, “Image super-
resolution via sparse representation,” IEEE Transactions on
Image Processing, vol. 19, no. 11, pp. 2861 –2873, Nov. 2010.

[5] K. Engan, S.O. Aase, and J.H. Husoy, “Method of optimal
directions for frame design,” in Proceedings., IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing, 1999, vol. 5, pp. 2443 –2446.

[6] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algo-
rithm for designing overcomplete dictionaries for sparse repre-
sentation,” IEEE Transactions on Signal Processing, vol. 54,
no. 11, pp. 4311 –4322, Nov. 2006.

[7] D. Zoran and Y. Weiss, “From learning models of natural im-
age patches to whole image restoration,” in IEEE International
Conference on Computer Vision (ICCV), 2011, Nov. 2011, pp.
479 –486.

[8] G. Yu, G. Sapiro, and S. Mallat, “Solving inverse problems
with piecewise linear estimators: From Gaussian mixture mod-
els to structured sparsity,” IEEE Transactions on Image Pro-
cessing, vol. 21, no. 5, pp. 2481 –2499, May 2012.

[9] S.G. Chang, B. Yu, and M. Vetterli, “Wavelet thresholding for
multiple noisy image copies,” IEEE Transactions on Image
Processing, vol. 9, no. 9, pp. 1631 –1635, Sep 2000.

[10] S.F. Cotter, B.D. Rao, K. Engan, and K. Kreutz-Delgado,
“Sparse solutions to linear inverse problems with multiple mea-
surement vectors,” IEEE Transactions on Signal Processing,
vol. 53, no. 7, pp. 2477 – 2488, July 2005.

1596



[11] J.A. Tropp, A.C. Gilbert, and M.J. Strauss, “Algorithms for
simultaneous sparse approximation: part I: Greedy pursuit,”
Signal Process., vol. 86, no. 3, pp. 572–588, Mar. 2006.

[12] J.A. Tropp, “Algorithms for simultaneous sparse approxima-
tion: part II: Convex relaxation,” Signal Process., vol. 86, no.
3, pp. 589–602, Mar. 2006.

[13] N. Yu, T. Qiu, and F. Ren, “Denoising for multiple image
copies through joint sparse representation,” Journal of Mathe-
matical Imaging and Vision, pp. 1–9, 2012.

[14] B.K. Gunturk and M. Gevrekci, “High-resolution image re-
construction from multiple differently exposed images,” IEEE
Signal Processing Letters, vol. 13, no. 4, pp. 197–200, April.

1597


