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ABSTRACT

This paper proposes a new digital image colorization algo-
rithm using the sparse optimization. We deal with the col-
orization problem where a grayscale image is colorized using
a full color image with a similar composition, and formulate
this problem as the sparse optimization problem. We also pro-
vide an iterative reweighted least squares (IRLS) algorithm to
solve this problem approximately, and the full color image is
obtained in practical time. Numerical examples show that the
proposed algorithm colorizes a grayscale image well.

Index Terms— image colorization, sparse optimization,
IRLS algorithm

1. INTRODUCTION

We consider a digital image colorization problem, where a
full color image is obtained from a grayscale image. Various
approaches have been proposed for this problem.

In [1, 2], the image colorization algorithms are proposed
based on a texture recognition approach, where a grayscale
image is colorized using known full color images which is
similar to the grayscale image. Although these algorithms
can colorize a grayscale image without any advance informa-
tion about color of the grayscale image to be colorized, their
results heavily depends on the quality of texture recognition.

In [3, 4, 5, 6], colorization algorithms are proposed based
on the numerical optimization approach. These algorithms
colorize a grayscale image with color data given in small re-
gions. Because the colorization problem is ill-posed, they as-
sume that grayscale images are converted from color images
using a linear transformation and that the total variation (TV)
norm of color images is small. Then the image colorization
problem is formulated as the TV norm minimization problem.
Although this approach can colorize the image efficiently if
there are enough given color regions, it cannot recover the
color of pixels far from the given color region.

In [6], a colorization algorithm is proposed based on the
sparse optimization approach. This algorithm colorizes a
grayscale image with color data given in very small regions.
Because the colorization problem is ill-posed, it is assumed
that the changing of each neighbor pixels is sparse. Then

Fig. 1. Concept of the proposed algorithm.

the image colorization problem is formulated as the l0/l1
norm minimization problem, the iteratively reweighted least
squares (IRLS)[7, 8] algorithm is applied to recover the color
image. Numerical examples indicate the efficiency of the
algorithm.

In this paper, we propose a new colorization algorithm
based on the sparse optimization using a reference color im-
age whose composition is similar to a grayscale image. As-
suming that the pixels of the same position of two images
have the same color, the algorithm transfers the color infor-
mation of proper pixels from the reference color image to
the grayscale image and expands the color information in the
same way as [6] to achieve the colorization as illustrated in
Fig. 1. In order to transfer the proper color information from
the reference image, the sparse optimization approach is uti-
lized again. Numerical examples show that the proposed al-
gorithm colorizes a grayscale image. The main contribution
of this paper is to formulate the colorization problem using a
reference color image as a sparse optimization problem and to
propose an IRLS algorithm by modifying the algorithm pro-
posed in [6].

2. MAIN RESULTS

2.1. Problem Formulation

This paper deals with the colorization problem where a color
image is recovered from a grayscale image using a reference
full color image. Let I ∈ RM×N , SR ∈ RM×N , SG ∈
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RM×N and SB ∈ RM×N denote the intensity values of a
grayscale image to be colorized, red, green and blue values
of a reference color image, respectively. Then we consider
the problem of recovering the red values XR ∈ RM×N ,
the green values XG ∈ RM×N and the blue values XB ∈
RM×N from the grayscale image I using SR, SG and SB .
We assume here that a grayscale image is converted from a
color image by forming a weighted sum of the values of red,
green and blue as follows,

I = arX
R + agX

G + abX
B, (1)

where ar, ag and ab are constants. Then the colorization prob-
lem considered in this paper is formulated as the following
matrix completion problem,

find X = [XR XG XB] ∈ RM×3N

subject to I = arX
R + agX

G + abX
B ,

[XR
i,j X

G
i,j X

B
i,j ] = f

(
[SR

i,j S
G
i,j S

B
i,j ]

)
,

∀(i, j) ∈ I,

(2)

where Ai,j denotes the (i, j)-element of the matrix A, I de-
notes a given set of matrix indices corresponding to mapping
pixels from a reference image, and f denotes a function which
transfers the color information to a grayscale image from a
reference image. In this problem X = [XR XG XB ] is a de-
sign variable. This problem is obviously ill-posed, and there-
fore we usually provide the additional assumption that each
color value changes smoothly between neighbor pixels if the
grayscale intensity value changes smoothly.

If f in (2) is the identity mapping, the problem is equal to
the image colorization problem with known color pixels con-
sidered in [6]. Hence we provide a colorization algorithm by
modifying the algorithm proposed in [6]. This section makes
a brief explain of the colorization algorithm proposed in [6].
Let

xR = vec
(
XR

)
, xG = vec

(
XG

)
, xB = vec

(
XB

)
,

sR = vec
(
SR

)
, sG = vec

(
SG

)
, sB = vec

(
SB

)
,

v = vec(I), x = [xT
R xT

G xT
B ]

T and s = [sTR sTG sTB]
T ,

where vec denotes the function which converts a matrix
to a vector by stacking the matrix columns successively.
Let us define U ∈ R(M−1)×M , V ∈ RM(N−1)×MN ,
Ū ∈ R3N(M−1)×3MN , V̄ ∈ R3M(N−1)×3MN , D ∈
R(6MN−3M−3N)×3MN , C ∈ RMN×3MN , G ∈ R3MN×3MN

and J ∈ R(6MN−3M−3N)×(6MN−3M−3N) as

Ui,j =

 1, if i = j
−1, if i+ 1 = j
0, otherwise

, Vi,j =

 1, if i = j
−1, if i+M = j,
0, otherwise

Ū = diag(U, . . . , U), V̄ = diag(V, V, V ), D = [ŪT V̄ T ]T ,

C =


ar, if i = j
ag, if i+MN = j
ab, if i+ 2MN = j
0, otherwise

G = diag(Ḡ, Ḡ, Ḡ), Ḡi,i =

{
1/vi, if vi ̸= 0
0, if vi = 0

,

and Ji,i =

{
1, if

∣∣(D[vT vT vT ]T )i
∣∣ ≤ ν1

0, otherwise
,

respectively, where diag(A1, . . . , Am) denotes a block diag-
onal matrix consisting of A1, . . . , Am, vi denotes the ith
element of v, (·)i denotes the ith element of a vector and
ν1 is a given constant. The vectors s and x correspond to
[SR SG SB ] and X = [XR XG XB ], respectively, and
the matrices Ū and V̄ denote vertical and horizontal differ-
ence operators. Then Dx denotes the differences between the
neighbor pixels of a whole image, that is, matrix J behave as
the mask operation taking pixels in J , where J is defined by

J = {(i, j) : |Ii,j − Ii,j+1| ≤ ν1 or |Ii,j − Ii+1,j | ≤ ν1} .

Assuming that each color value changes smoothly between
neighbor pixels if the grayscale intensity value changes
smoothly, we formulate the image colorization problem as
the following sparse optimization problem,

Minimize µ0∥JDGx∥0 + µ1∥(E − J)Dx∥1
subject to v = Cx, xi = f(si), ∀i ∈ Ī,

(3)

where µ0 ≥ 0 and µ1 ≥ 0 are given constants, E denotes
an identity matrix with a certain size, ∥ · ∥p denotes the lp
norm of a vector and Ī denotes a given set of vector indices
corresponding to I. The first term of the objective function
is to make the changes of neighbor pixels in J smooth, and
the second term forces to colorize the pixels not in J . Note
that this problem is exactly equal to the colorization problem
provided in [6]. The problem colorizes a whole image such
that the pixels in the same region have the same color, and the
details are written in [6].

Next, we consider the set I and the function f . The color
information of pixels in I is mapped from the color reference
image to the grayscale image using the function f . Although
the grayscale image and the reference color image have the
same composition, only some pixels of the same positions
have the same RGB values. Therefore we choose the set I as

I =
{
(i, j) : |Ii,j − ISi,j | ≤ ν2

}
for given ν2 > 0 and assume that the RGB values of pixels in
I are given in proportion to the grayscale intensity value of
a reference image, which can be described by the following
equations,

XR
i,j

Ii,j
=

SR
i,j

ISi,j
,
XG

i,j

Ii,j
=

SG
i,j

ISi,j
,
XB

i,j

Ii,j
=

SB
i,j

ISi,j
, ∀(i, j) ∈ I, (4)

where, IS is defined by IS = arS
R + agS

G + abS
B . The

equations (4) can be rewritten by M(Fs− x) = 0.

F = diag(F̄ , F̄ , F̄ ), F̄i,i =

{
vi/vSi, if vSi ̸= 0

0, if vSi = 0
.

1589



M = diag(M̄, M̄ , M̄), M̄i,i =

{
1, if i ∈ Ī
0, otherwise

,

where vS = vec(IS). Finally we formulate the colorization
problem as follows,

Minimize µ0∥JDGx∥0 + µ1∥(E − J)Dx∥1
subject to v = Cx, M(Fs− x) = 0

. (5)

However, experimental results indicate that the above ap-
proach does not recover the color image correctly. Because
the set I has the large number of elements, the equality con-
straints of (5) are strict, and the objective function is not
decreased enough, which causes the incorrect color recovery.
In order to transfer necessary and sufficient color information
of the reference color image, we reformulate the colorization
problem using the l0 norm of the vector of M(Fs − x) as
follows,

Minimize µ0∥JDGx∥0 + µ1∥(E − J)Dx∥1
+µ2∥M(Fs− x)∥0

subject to v = Cx,
(6)

where µ2 > 0 is a given constant.
The problem (6) is well-posed. However, since the con-

straints are still strict, we relax the problem using the La-
grangian relaxation and propose the following problem,

Minimize µ0∥JDGx∥0 + µ1∥(E − J)Dx∥1
+µ2∥M(Fs− x)∥0 + λ∥v − Cx∥22,

(7)

where λ > 0 is a given constant.

2.2. Iterative Reweighted Least Squares Algorithm

Since the problem (7) is non-convex and difficult to solve
exactly, this paper applies the iteratively reweighted least
squares (IRLS) [7, 8]. The IRLS provides an approximate
solution of the lp norm minimization of z = [z1 z2 . . . zn]

T

by solving the following least square problem iteratively,

z(k+1) = argmin
z
∥W (k)z∥22,

where z(k+1) denotes the solution at the (k + 1)th iteration,
W (k) is the diagonal matrix of weights whose diagonal ele-
ments are defined by W

(k)
i,i = (|z(k)i |1−p/2 + ε)−1, and ε > 0

is a small constant.
Applying the IRLS to (7), the solution at the (k + 1)th

iteration is obtained as

x(k+1) =

argmin
x∈R3MN

µ0∥W (k)
0 JDGx∥22 + µ1∥W (k)

1 (E − J)Dx∥22

+µ2∥W2M(Fs− x)∥22 + λ∥v − Cx∥22.
(8)

Algorithm 1 IRLS algorithm for image colorization

Require: v, sR, sG, sB , µ0, µ1, µ2, ν1, ν2, λ and ε
set k = 0
set W (0)

0 , W (0)
1 and W

(0)
2 as the identity matrices

repeat
calculate x(k+1) using (10)
update W

(k+1)
0 , W (k+1)

1 and W
(k+1)
2 using (9)

k ← k + 1
until termination criterion is satisfied

Ensure: color pixels x(k+1)

In the above equation, W (k)
0 , W (k)

1 and W
(k)
2 are diagonal

matrices whose diagonal elements are calculated as

W
(k)
0 i,i = (|pi|+ ε)−1, W

(k)
1 i,i = (

√
qi + ε)−1,

and W
(k)
2 i,i = (|hi|+ ε)−1,

(9)

respectively, where pi, qi and hi are the ith element of the
vectors JDGx(k), (E − J)Dx(k) and M(Fs − x(k)). The
least squares problem (8) can be solved simply as

x(k+1) =


µ0W

(k)
0 JDG

µ1W
(k)
1 (E − J)D

µ2W
(k)
2 M

λ1C


† 

0
0

µ2Fs
λ1v

 , (10)

where 0 denotes the zero vector of size 6MN − 3M − 3N ,
and A† denotes the pseudoinverse of a matrix A. Finally this
paper proposes the IRLS algorithm for the image colorization
using sparse optimization as shown in Algorithm 1.

3. NUMERICAL EXAMPLES

This section shows colorization examples to demonstrate the
effectiveness of the proposed algorithm. In almost all exam-
ples with the exception of some experiments, we use ε =
10−4, µ0 = 9.999 × 10−1, µ1 = 10−4, µ2 = 0.5, λ = 100,
ν1 = 15 and ν2 = 2, which give the best colorization. We
utilize the termination criterion k = 10, that is, the number of
iterations is 10, because almost the same results are given by
more iterations. The values of the constants (1) are adopted
as [ar ag ag] = [0.29891 0.58661 0.11448], which is usually
used in the color conversion from RGB to YCbCr according
to ITU-R BT.601.

First we compare (7) with the Lagrangian relaxation of
(5), which can be obtained by replacing ∥M(Fs−x)∥0 with
∥M(Fs − x)∥2 and solved by the same algorithm as Algo-
rithm 1, in order to examine the effect of the replacement
of the equality constraints by the l0 norm. Figure 2 shows
the results. we can see that proposed algorithm colorizes the
grayscale image effectively while the problem (5) gives worse
color images. Utilizing the sparse optimization, the color in-
formation of necessary and sufficient pixels of the reference
color image is transferred to the grayscale image.

1590



(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a) Original image (180 × 180 pixels). (b) Given
grayscale image. (c) Given reference color image. (d) Result
of the propped algorithm based on (7). (e) Result based on (5)
with ν2 = 2 and (f) with ν2 = 256.

Next we apply the proposed algorithm to two examples
in Fig. 3 and 4. As can be seen, the proposed algorithm can
colorize the grayscale image efficiently using the reference
image.

4. CONCLUSION

This paper proposes the sparse optimization for the image col-
orization. The image colorization problem is formulated as
the sparse optimization problem, and we apply the IRLS al-
gorithm in the problem. Numerical examples show that the
proposed algorithm can colorize a grayscale image using a
reference image.

(a) (b)

(c) (d)

Fig. 3. (a) Original image (180 × 180 pixels). (b) Given
grayscale image. (c) Given reference color image. (d) Result
of the proposed algorithm.

(a) (b)

(c) (d)

Fig. 4. (a) Original image (225 × 225 pixels). (b) Given
grayscale image. (c) Given reference color image. (d) Result
of the proposed algorithm.
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