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ABSTRACT

Sparse representations using learned dictionaries have been
successful in several image processing applications. How-
ever, using a single dictionary model in inverse problems may
lead to instability in estimation. In this paper, we propose to
perform image restoration using an ensemble of weak dic-
tionaries that incorporate prior knowledge about the form of
linear corruption. The dictionary learned in each round of the
training procedure is optimized for the training examples hav-
ing high reconstruction error in the previous round. The weak
dictionaries are either obtained using a weighted K-Means
or an example-selection approach. The final restored data is
computed as a convex combination of data restored in indi-
vidual rounds. Results with compressed recovery of standard
images show that the proposed dictionaries result in a better
performance compared to using a single dictionary obtained
with a traditional alternating minimization approach.

Index Terms— Dictionary learning, Boosting, Sparse
representations, Image restoration

1. INTRODUCTION

Natural signals and images exhibit statistics that allow them to
be efficiently represented using a sparse linear combination of
elementary patterns [1]. The local regions of natural images,
referred to as patches, can be represented using a sparse linear
combination of columns from a dictionary matrix. The gen-
erative model for sparse coding is hence given as x = Da,
where x € RM is the data sample, D € RM*X is the dic-
tionary matrix with K columns, and a € R is the sparse
coefficient vector. The dictionary can be either pre-defined
or learned from the training data itself. Learned dictionar-
ies have been shown to provide improved performance for
restoring degraded data in applications such as denoising, in-
painting, deblurring, superresolution, and compressive sens-
ing [2, 3], and also in machine learning applications such as
classification and clustering [4, 5, 6].

Assuming that the training data x is obtained from a
probability space, the dictionary learning problem can be
expressed as minimizing the objective [7]

g(D) = Ex[h(x,D)], (D
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where the columns of D, referred to as dictionary atoms, are
constrained as ||d;|2 < 1,Vj. The sparse coding cost is

h(x, D) = min|}x — Dall3 + Alall. @)

If the continuous probability distribution is unknown and we
only have L training samples {x;}~_,, each with probability
mass p(X;), (1) can be modified as the empirical cost function,

L
§(D) = Z h(xi, D)p(x;). 3)

Typically dictionary learning algorithms solve for the sparse
codes using (2) [8, 9], and obtain the dictionary by minimiz-
ing §(D), repeating the steps until convergence. We refer to
this baseline algorithm as Alt-Opt. Since this is an alternating
minimization process, it is important to provide a good ini-
tial dictionary and this is performed by setting the atoms to
normalized cluster centers of the data [10].

In this paper, we propose to restore degraded images by
learning an ensemble of weak dictionaries, each of which
need not be highly optimized with respect to the training data.
The dictionaries are obtained using a simplified procedure,
taking into account the corruption operation. The representa-
tion computed using the individual dictionaries will be com-
bined together to obtain the final reconstructed image. The
proposed algorithm, illustrated in Figure 1, incorporates the
boosting procedure which is a well-known machine learning
technique [11] used to improve the accuracy of learning al-
gorithms, using multiple weak hypotheses instead of a single
strong hypothesis. We show that the proposed boosted dic-
tionaries resulted in an improved performance, for random-
projection based compressive recovery, when compared to
dictionaries obtained using the Al-Opt method. It is impor-
tant to note that the performance of boosted dictionaries is
independent of the actual corruption, as long as the proper
form of corruption is used during training.

2. IMAGE RESTORATION AND BOOSTING

In restoration applications, it is necessary to solve an inverse
problem, in order to estimate the data x from

z = ®(x) +n, 4)
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Fig. 1. Illustration of the proposed boosted dictionary learning for image restoration. SC denotes sparse coding using (2).

where ®(.) is the corruption operator and n is the additive
noise. If the operator ®(.) is linear, which is the case in
restoration applications mentioned earlier, we can represent
it using the matrix ®. With the prior knowledge that x is
sparsely representable in a dictionary D, (4) can be expressed
as z = ®Da + n. Restoring x now reduces to computing a
by solving h(z, ®D), and estimating x = Da [2]. Such tra-
ditional sparse models using a single learned dictionary suffer
from the following drawbacks: (a) if the correlation between
the atoms in D is not constrained to be low, the inverse prob-
lem estimation may become unstable, (b) even if the atoms
in D are decorrelated, the atoms of the degraded dictionary
®D can be correlated, or have an /5 norm close to zero, both
of which can lead to instability in inverse problems. The in-
version can be stabilized and performance can be improved
by including additional regularization in sparse modeling. In
[12, 13], the authors propose to learn dictionaries and per-
form restoration by performing simultaneous sparse coding
on a set of similar image patches, leading to an improved per-
formance.

In this work, we adopt an approach of stabilizing the in-
version by sequentially learning an ensemble of weak dictio-
naries using training data and obtaining the cumulative repre-
sentation as a weighted average of the individual representa-
tions, as illustrated in Figure 1. Note that, boosting has been
used with bag-of-words approach for updating codebooks in
classification [14] and medical image retrieval [15]. However,
it has not been used so far in sparsity based image restoration
problems. The proposed algorithm starts by assuming a uni-
form probability distribution on the training data, and learns a
weak dictionary. The restoration error of the degraded train-

ing data are computed, and the probability mass of the data
samples that have higher restoration error are upweighted for
the next round. The boosting weights for combining the re-
constructions are optimized such that the cumulative recon-
struction is in the convex hull of the individual reconstruc-
tions. We propose two methods for learning weak dictionar-
ies - weighted K-Means method (KM-Boost) and example-
selection method (EX-Boost).

3. PROPOSED ALGORITHM

In typical dictionary learning algorithms, such as the Alt-Opt
method, a single strong dictionary D is learned by optimizing
(3), assuming a uniform distribution on the training samples.
As shown in Figure 1, we propose to learn 7" weak dictionar-
ies by taking into account the corruption ®, thereby stabiliz-
ing the inverse problem of estimating x from z.

In any round ¢ of the proposed method, the training data
X = [x1 ...xz] is degraded using the known corruption ®.
The sparse codes A; of the degraded data are computed us-
ing the weak dictionary D; and the data is restored as D; A;.
The boosting parameter «;; ensures that the estimated data for
round ¢ given by X, is a convex combination of the restora-
tion D;A; and the estimate of previous round Xt,l. This
parameter «; can be obtained as

subj. to 0 < a < 1,

&)
which ensures that the cumulative reconstruction is close to
the training data. If o is high, it means that the data has been
restored well using the dictionary D;. The squared error for

R 2
min HX - {(1 — )Xy + aDtAt} ’F
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Number of Measurements (N)
N=8 N=16 N=32

Image Alt-Opt | KM-Boost | EX-Boost | Alt-Opt | KM-Boost | EX-Boost | Alt-Opt | KM-Boost | EX-Boost
Barbara 21.39 21.82 22.05 22.65 23.37 23.76 24.94 25.64 26.34
Boat 23.35 23.91 23.82 25.72 26.38 26.42 28.54 28.83 29.32
Couple 23.41 24.04 23.94 25.74 26.51 26.51 28.62 29.18 29.60
Fingerprint 18.40 19.16 18.83 21.52 22.70 22.34 24.97 26.17 26.16
House 24.84 25.52 25.29 27.73 28.62 28.44 30.97 31.66 31.97
Lena 25.51 26.16 25.94 28.12 28.86 28.82 30.99 31.50 31.85
Man 24.18 24.75 24.69 26.43 27.10 27.23 29.27 29.74 30.24
Peppers 21.54 22.11 21.99 24.08 24.60 24.66 27.20 27.34 27.89

Table 1. Compressed recovery of standard images: PSNR (dB) obtained using Alternating Dictionary Optimization (Alt-Opt),
K-Means Boost (KM-Boost), and Example Boost (EX-Boost) methods, for different values of N. The results reported were
obtained by averaging over 10 iterations with different random measurement matrices. In each, the higher PSNR is given in

bold font.

i" training sample in the cumulative restoration is
er(i) = |lxi — [(1 — ap)Xe—1,i + asDyag ] I3, (6)

and the maximum squared error across all training samples
in round ¢ is given by €; y,q,. The probability mass of each
training sample is updated as

Pet1(Xs) < pe(xi) exp (ares (i) /et maz) » @)

and normalized such that it sums to one. The samples that
incur higher error in the current round are provided higher
importance in the next round. This ensures that the weak dic-
tionaries learned in the next round will provide a good restora-
tion for these samples. Note that the distribution update pro-
cedure is similar to the standard procedure used in boost-
ing for classification [11], with the modification that the cost
function that measures performance is different for restora-
tion.

3.1. Weak Dictionary Learning

The weak dictionaries obtained using the training samples and
the probability distribution in each round make it possible for
us to derive an ensemble model, as a combination of several
weak models. Given a training set {x; }“_;, and its probability
masses {p(x;)}~ ;, we will propose two simple approaches
for learning weak dictionaries.

3.1.1. KM-Boost

When the sparse code for each training example is constrained
to take one only one non-zero coefficient of value 1, and the
norms of the dictionary atoms are unconstrained, the dictio-
nary learning problem (3) can be shown to reduce to K-Means
clustering. Hence, computing a set of K-Means cluster cen-
ters and normalizing them to unit /5 norm constitutes a weak

dictionary. However, since the distribution on the data could
be non-uniform in our case, we need to alter the clustering
scheme to incorporate the weight distribution. Denoting the
cluster centers to be {cx }_ |, the cluster membership sets to
be {Cx}£ |, the weighted K-Means objective is denoted as

K
min Z Z p(x;)||x; — cxl3. (8)

{er i dC it 1 fce,

The weighted K-Means procedure is implemented by
modifying the K-Means++ algorithm [16], that provides a
method for careful initialization leading to improved speed
and accuracy in clustering. Let us denote §; as the shortest
distance of the 7™ training sample to the cluster center already
chosen. The weighted K-Means algorithm proceeds as:

1. Pick first center c¢; from the training set based on the
distribution {p(x;)}L ;.

2. x; is chosen as the next center c; with the probability
p(x:)87
Sy p(xa)dF

3. Repeat step 2 until we have chosen K cluster centers.

4. Cluster Assignment: For each cluster k = {1,..., K},
set the membership set Cj, to contain training samples
closer to c;, compared to other centers c;, Vj # k.

5. Cluster Update: For each cluster k = {1,..., K}, set

ci to be the weighted mean of all points in Cy, ¢ =
Z'LECk xip(xi)
Zieck p(xi) :

6. Repeat steps 4 and 5 until convergence.

Note that the steps 1, 2, and 3 are used to compute the ini-

tial cluster centers giving preference to samples with higher

probability mass. Finally, each dictionary atom dy, is set as
Ck

the normalized cluster center Terls:
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Fig. 2. Compressed recovery of Man image using EX-Boost dictionaries. The reconstructed images along with their corre-
sponding PSNR are shown for the rounds {1, 5, 20, 50}, when 25% random measurements are used.
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Fig. 3. Training MSE obtained after every round of dictionary
training in the EX-Boost algorithm.

3.1.2. EX-Boost

From the dictionary update equation in (3), it is clear that the
learned dictionary atoms are close to training samples that
have higher probabilities. Therefore, in the EX-Boost method,
the dictionary for round ¢ is updated by choosing K data sam-
ples based on the non-uniform weight distribution, and nor-
malizing them. This scheme will ensure that those samples
with high restoration errors in the previous round, will be bet-
ter approximated in the current round. Since the learning ap-
proach is simpler, EX-Boost typically requires more rounds of
dictionary training compared to the KM-Boost procedure.

4. EXAMPLE APPLICATION: COMPRESSED
RECOVERY

In compressed sensing, the N —dimensional observation z is
obtained by projecting the M —dimensional data y onto a ran-
dom linear subspace, where N < M [17]. In this case, the
entries of the corruption matrix & € RY*M are obtained
as i.i.d. realizations of a Gaussian or Bernoulli random vari-

able. In order to restore the test data from the observations,
we adopt the traditional sparse coding approach, as well as the
proposed approaches. The training data is obtained by ran-
domly sampling 50, 000 patches of size 8 x 8 from the Berke-
ley Segmentation Dataset [18]. We compare the proposed
KM-Boost and EX-Boost learning procedures with the alter-
nating minimization dictionary learning algorithm (Alt-Opt),
that learns a single dictionary. In all the cases, the sparsity
penalty A is set as 0.1. KM-Boost is repeated for 20 rounds,
EX-Boost for 50 rounds, and ¢;-based learning algorithm is
repeated for 100 iterations. The training MSE obtained with
the proposed EX-Boost algorithm by progressively learning
multiple rounds of dictionaries is shown in Figure 3.

When restoring test observations, the reconstruction
procedure given in Figure 1 is used with the dictionaries
{D,}%_,, and the boosting coefficients {a;}~ ;, obtained
during training. Compressed recovery was performed on 8
standard images with N = {8,16,32} measurements and
the results obtained are reported in Table 1. In each case,
the PSNR values were obtained by averaging the results over
10 iterations with different random measurement matrices.
The proposed approaches outperform the traditional dictio-
nary learning in all cases. The improvement in reconstruction
performance obtained with increasing number of boosted dic-
tionaries is demonstrated in Figure 2. We also observed that
the performance of the proposed approaches are not affected
even if different corruption matrices are employed during
training and testing phases.

5. CONCLUSIONS

We proposed an algorithm for learning an ensemble of weak
dictionaries that incorporates the knowledge of degradation
of data and provided a method for restoring the data from de-
graded observations. Results with compressed recovery show
that the proposed method outperforms dictionaries obtained
with the traditional alternating optimization method. Possible
future research involves analyzing the convergence and gen-
eralization behavior of the algorithm apart from testing the
proposed method for several types of degradations.
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