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ABSTRACT

Image colorization is the task to color a grayscale image with lim-
ited color cues. In this work, we present a novel method to per-
form image colorization using sparse representation. Our method
first trains an over-complete dictionary in YUV color space. Then
taking a grayscale image and a small subset of color pixels as inputs,
our method colorizes overlapping image patches via sparse repre-
sentation; it is achieved by seeking sparse representations of patches
that are consistent with both the grayscale image and the color pix-
els. After that, we aggregate the colorized patches with weights to
get an intermediate result. This process iterates until the image is
properly colorized. Experimental results show that our method leads
to high-quality colorizations with small number of given color pix-
els. To demonstrate one of the applications of the proposed method,
we apply it to transfer the color of one image onto another to obtain
a visually pleasing image.

Index Terms— colorization, sparse representation, color trans-
fer, image restoration

1. INTRODUCTION

Image colorization, which is the process of adding color to a
monochrome image, used to be a time-consuming and tedious task
that requires tremendous user efforts. Recently, several effective
colorization algorithms [1, 2, 3, 4] have been proposed to resolve
this highly ill-posed problem with reasonable amount of user inputs.
These algorithms receive inputs in form of either example images
with similar color [2, 4] or scribbles that indicate colors of certain
pixels [1, 3]; while their mechanisms to propagate chrominance
vary a lot. For instance, the work by Levin et al. [1] optimizes a
cost function based on the premise that adjacent pixels with similar
intensities have similar colors. Another work by Yatziv et al. [3] col-
orizes images based on luminance-weighted chrominance blending
and fast intrinsic distance computations.

Different from the previous works, in this paper we propose a
novel and effective colorization technique based on sparse repre-
sentation and dictionary learning. Sparse representation [5, 6] is
a promising and powerful tool to model real-world signals, which
suggests that the signals of interest live in a low-dimensional linear
subspace defined by the combinations of atoms from the learned dic-
tionary. Put it formally, for a class of signals Γ ⊂ Rn, there exist
a dictionary (a matrix) D ∈ Rn×k that contains k prototype signals
(atoms); such that for any signal x ∈ Γ, we can approximate it well
with a sparse linear combination of atoms from D. Mathematically,
we have x ≈ Dα and ∥α∥0 ≪ n where α ∈ Rk is the sparse repre-
sentation of x in terms of dictionary D, and ∥ · ∥0 counts the number
of nonzero elements (cardinality) in a vector [7]. Although finding
the sparsest representation and the dictionary is generally intractable,

Fig. 1. Given a grayscale image with randomly scattered color pix-
els (left), our method colorize it faithfully (middle) compared to the
original color image (right).

recent progresses show that approximation algorithms works quite
well in practice [6]. Besides, sparse representation achieves state-of-
the-art results in image processing applications like denoising, in-
painting and demosaicing [7, 8], which encourages us to explore its
potential in image colorization.

Our method works in the YUV color space, where the Y com-
ponent (luminance) of the image is given by the user; the algorithm
also takes as input a small subset of scattered pixels which indicate
the desired U, V values (chrominance). Although other color spaces
(e.g., YCbCr and Lab) may also be used in our work under the same
rationale, we choose YUV color space which is the same as [1] so
that comparisons with [1] are fairer. As a preparation, we first train
an over-complete dictionary in YUV space offline, which uses image
patches from a generic image database as training examples. After
that, our method colorizes overlapping image patches by seeking for
sparse representations of patches that are consistent with both the
Y component and the known U, V values. We then aggregate the
colorized patches with different confidences to form an intermediate
colorized image. We iterate this process until all pixels are properly
colorized. Fig. 1 presents an example of colorization using the pro-
posed method, where we randomly remove 98% of the chrominance
from the image, and colorize it to restore its U, V components. Note
that in Fig. 1 we darken the given grayscale image and enhance the
color pixels for better display. We recommend to read the electronic
version of this paper for the best views of the figures.

2. YUV DICTIONARY LEARNING

To facilitate the colorization algorithm, we first train an over-
complete dictionary offline, which is a common dictionary being
used by all input images. This dictionary, denoted by D(YUV), is a

YUV dictionary and D(YUV) =
[
D(Y)T

D(U)T
D(V)T

]T
∈ R3n×k,

where D(Y),D(U),D(V) ∈ Rn×k are sub-dictionaries for the Y, U
and V color components, respectively. Here we denote n as the
length of their atoms, which is also the length of the vectorized
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Fig. 2. Some atoms of the YUV color dictionary learned over the
BSDS500 generic image database.

image patch; and k is the number of atoms in the dictionary.
To train the dictionary, we gather numerous sample image

patches randomly from a generic color image database and convert
all patches into YUV color space. After that, to make the learned
dictionary less sensitive to luminance changes, we subtract the mean
from the Y component of each patch such that the Y components
of all patches have zero means. In other words, a pre-processed

sample patch is a vector s(YUV) =
[
s(Y)T

s(U)T
s(V)T

]T
∈ R3n, where

s(Y), s(U), s(V) ∈ Rn are the vectorized Y, U and V components
of that patch, and particularly, s(Y) has zero mean. With all the
pre-processed patches as training samples, we train the YUV color
dictionary D(YUV) using the online dictionary learning algorithm
proposed in [9]. Note that in this work, we use patches of sizes
12×12, namely n = 144, and the dictionary has k = 625 atoms.
We adopt the BSDS500 database [10] as the generic image database
to extract the sample patches. Fig. 2 shows 250 atoms of the YUV
color dictionary trained over 106 color patches, where we display
the atoms in the same way as that of [7].

3. PATCH-BASED COLORIZATION USING
SPARSE REPRESENTATION

Our method colorizes overlapping patches in the grayscale image
based on the given scattered color pixels. Equipped with the learned
dictionary, this section elaborates our algorithm to colorize an image
patch using sparse representation.

3.1. Notations

To aid in the presentation, we first introduce some notations. We
denote the given grayscale image (Y component, luminance) as a
column vector X(Y) ∈ RN , where N is the number of pixels in the
image. Besides, we define a binary indicator B ∈ RN such that an
entry in B corresponds to a pixel with known color is set to be 1
or otherwise 0. We then define two vectors containing the given U,
V components (chrominance) as X(U),X(V) ∈ RN , such that for an
entry in X(U) (or X(V)) corresponds to a pixel with known color, its
value is the given U (or V) value, otherwise it is 0. We also define
the binary matrices Rij ∈ Rn×N that extracts the

√
n ×
√
n patch

at (i, j) from the N -by-1 vectorized image, where the index (i, j) is
the coordinate of the top-left corner of the patch.

With the patch extractors Rij , image patches of the Y, U and
V components can be written as n-by-1 vectors. The (i, j)-th patch
of the grayscale image with mean subtracted is x(Y)

ij = RijX
(Y) −

µ(Y)
ij 1n, where µ(Y)

ij is the mean of RijX
(Y), 1n is the n-by-1 vec-

tor with ones. The (i, j)-th patch of the U and V components are
computed as x(U)

ij = RijX
(U) and x(V)

ij = RijX
(V), respectively.

Using the patch extractors Rij , we denote the binary indicator
of the (i, j)-th patch as an n-by-1 vector βij = RijB; and mij =
∥βij∥0 as the number of given color pixels in the (i, j)-th patch.

3.2. Image Patch Colorization

Based on the luminance (Y) and the given chrominance (U and V)
within the patch, we consider colorizing the (i, j)-th patch using

sparse representation. Denote x(UV)
ij =

[
x(U)
ij

T
x(V)
ij

T
]T

, β(UV)
ij =[

βT
ij βT

ij

]T, D(UV) =
[
D(U)T

D(V)T
]T

, and diag(·) as a diagonal ma-
trix formed from its vector argument. Then ideally, our aim is to find
the sparse representation αij ∈ Rk with minimal l0-norm, such that

D(Y)αij ≈ x(Y)
ij (luminance consistency),

diag(β(UV)
ij )D(UV)αij ≈ diag(β(UV)

ij )x(UV)
ij (chromin. consistency).

Here the indicator β(UV)
ij works as a mask to eliminate the effects of

the irrelevant pixels. In a word, we seek for a sparse representation
αij that is consistent with both the luminance and the known chromi-
nance within the (i, j)-th patch. Notice that here we implicitly as-
sume, the sparse representation of the patch with D(Y) is the same as
that with D(UV), which is a reasonable assumption for well-behaved
YUV dictionary D(YUV) that learned from natural color images.

A more concrete formulation of the image patch colorization
problem stated above can be written as:

α̂ij = argmin
αij

∥αij∥0 subject to
∥∥∥D(Y)αij − x(Y)

ij

∥∥∥2

2
+

γ
∥∥∥diag(β(UV)

ij )D(UV)αij − diag(β(UV)
ij )x(UV)

ij

∥∥∥2

2
≤ ϵ, (1)

where coefficient γ controls the tradeoff between luminance consis-
tency and chrominance consistency, and ϵ is the error tolerance.

By denoting Wij(
√
γ) = diag

([
1n

T √γβ(UV)
ij

T
]T
)

and

x(YUV)
ij =

[
x(Y)
ij

T
x(UV)
ij

T
]T

, we combine the two terms in the con-
straint of (1) and rewrite the problem into a tractable form,

α̂ij = argmin
αij

∥αij∥0 subject to∥∥∥Wij(
√
γ)D(YUV) αij −Wij(

√
γ)x(YUV)

ij

∥∥∥2

2
≤ ϵ. (2)

Though the l0-norm minimization problem (2) is NP-hard, its so-
lution can be approximated using either greedy algorithms (e.g., or-
thogonal matching pursuit) or convex relaxation techniques (e.g., ba-
sis pursuit) [6]. In this work, we employ orthogonal matching pursuit
(OMP) like that in [7, 8] for its simplicity and efficiency.

With the solved α̂ij , the colorized patch can be obtained as

ˆx(U)
ij = D(U)α̂ij ,

ˆx(V)
ij = D(V)α̂ij , (3)

in which ˆx(U)
ij ,

ˆx(V)
ij ∈ Rn are the recovered U and V components of

the (i, j)-th patch, respectively.
The coefficient γ in (1) and (2) is a critical parameter that

weights the importance of the known color pixels. Our experiments
reveal that, a small γ permits the structure in the luminance x(Y)

ij to
guide the propagation of the chrominance, which benefits the col-
orizations. On the contrary, a big γ drives the colorizations look blur
because too much emphasis is placed onto recovery of the known
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Algorithm 1 Image colorization using sparse representation

INPUT: X(Y), X(U)
0 , X(V)

0 and B0

OUTPUT: X(U)
t and X(V)

t

t← 0;
while ∥Bt∥0 ̸= N do

ˆX(U)
t+1 ← 0, ˆX(V)

t+1 ← 0;
for all (i, j) that defines an image patch with 0 < mij < n do

Take X(Y), X(U)
t , X(V)

t and Bt as inputs, perform patch-based

colorization described in Section 3 to recover ˆx(U)
ij and ˆx(V)

ij ;

Confidence update: Ct+1 ← Ct+1 +mijR
T
ij1n;

Colorized patches aggregation:
ˆX(U)
t+1 ←

ˆX(U)
t+1 +mijR

T
ij

ˆx(U)
ij ,

ˆX(V)
t+1 ←

ˆX(V)
t+1 +mijR

T
ij

ˆx(V)
ij ;

end for
for i = 1 to N do

Binary indicator update:

Bt+1(i)←

{
1 Ct+1(i) ≥ d or Bt(i) = 1,

0 otherwise;

Colorization update:

X
(Ω)
t+1(i)←

{
ˆ

X
(Ω)
t+1(i)/Ct+1(i) Bt+1(i) = 1,

0 otherwise,
where Ω ∈ {U,V};

end for
Rectify X(U)

t+1 and X(V)
t+1 globally based on the known chromi-

nance in X(U)
t and X(V)

t ;

t← t+ 1;
end while

colors so that the details in the luminance is overlooked. As a result,
we empirically set γ to be a small value 0.05. Besides, we also fix
ϵ = 10−8 when solving (2). Having observed that the contrast and

hue of ˆx(U)
ij and ˆx(V)

ij could be incorrect when γ is small, we carry out
a simple procedure to rectify them. When mij is no less than a pre-

defined value l = 4, we amplify ˆx(U)
ij by a scalar then shift its mean

by solving a least-square problem based on the given U components

in the patch; when mij < l, we simply shift the mean of ˆx(U)
ij such

that diag(βij)
ˆx(U)
ij has the same mean as diag(βij)x

(U)
ij . The same

procedure is applied to rectify the recovered V component ˆx(V)
ij .

4. CONFIDENCE-BASED AGGREGATION

Our method colorizes the given image in an iterative manner so that
the known chrominance can be propagated to the whole image. In
every iteration, we apply the patch-based colorization algorithm pre-
sented in Section 3 to all the overlapping patches. After that, we
combine them with proper weights to form the colorized image of
that iteration. To describe the colorization confidence of each pixel,
we define a confidence map C ∈ RN . The aggregated U and V
components of the image are denoted as two N -by-1 column vec-
tors, X̂(U) and X̂(V); and the number of iteration is denoted as t. The
proposed image colorization method is summarized in Algorithm 1.

Fig. 3. Ten test images from the Kodak image database. With the
order of left to right then top to bottom, they are indexed as image 1,
image 2, and so forth.

(a) Luminance with color pixels (b) Result of the proposed method

(c) Result of method [1] (d) Original color region of image 3

Fig. 4. Colorizations of a region within image 3 in Fig. 3. Note the
transition between the yellow and cyan feather in the colorizations.

In Algorithm 1, we set the weight of a colorized patch, say the
(i, j)-th patch, to be proportional to mij and update the confidence
map correspondingly. We also update the binary indicator B in ev-
ery iteration according to the confidence C and a predefined thresh-
old d. Consequently for a particular pixel, if it is colorized for less
than d times within an iteration, we regard its aggregated color as
untrustworthy and its color is marked as unknown in the next itera-
tion. In this work, we empirically set d = 3 for a reasonable trade-
off between complexity and colorization quality. Note that similar
to the post-processing step in Section 3.2, at iteration t we solve a
least-square problem and rectify X(U)

t+1 based on the known U com-
ponents in X(U)

t . This simple chrominance correction procedure is
applied onto X(V)

t+1 as well.

5. EXPERIMENTAL RESULTS

In this section, we demonstrate our colorization results and compare
them with those obtained by [1]. After that, we present an applica-
tion of our method in color transfer, where the colors of a bright but
blurred image are transferred onto another sharp but dim image.

Fig. 3 shows 10 test images selected from the Kodak PhotoCD
[11], which are all of sizes 512×768. For every image, we uni-
formly sample 1 color pixel out of every 8×8 non-overlapping patch,
therefore about 98.4% of chrominance are removed. This sampling
scheme, as shown in Fig. 4(a), may not be optimal, we choose this
typical sampling to evaluate our algorithm for its simplicity and rep-
resentativeness. After that, we colorize the images using the pro-
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Table 1. CPSNR qualities for the 10 test images (in dB)
Image 1 2 3 4 5

Result of [1] 36.29 38.79 35.85 35.19 35.32
Proposed method 36.94 39.28 36.30 35.50 35.61

Image 6 7 8 9 10
Result of [1] 39.15 33.45 35.88 38.18 38.76

Proposed method 39.40 33.63 35.87 38.12 38.34

posed method and the method in [1] using their provided implemen-
tation with the exact solver. To quantitatively assess the colorization
quality, we adopt the color peak signal-to-noise ratio (CPSNR) as a
measurement, which is defined as follows: for two color images I1
and I2 of the same sizes H ×W , the CPSNR is computed as

CPSNR = 10 log10
2552

MSE
,

MSE =
1

3HW

∑
Ω∈{R,G,B}

H−1∑
i=0

W−1∑
j=0

(
I
(Ω)
1 (i, j)− I

(Ω)
2 (i, j)

)2

,

where I
(R)
1 (i, j), I(G)

1 (i, j), and I
(B)
1 (i, j) denote the R, G and B

color components of the pixel locates at (i, j) in the color image I1;
which is similar for I2. We compute the CPSNR values between
the colorizations and their corresponding ground-truth color images,
then tabulate the results in Table 1. It reveals that, with scattered
color cues, our method gives superior results in terms of CPSNR.

Fig. 4 presents the colorizations of a region within image 3 of
Fig. 3. Note that Fig. 4(a) is displayed in the same way as that of the
left image in Fig. 1. The colorization of our method looks vivid and
comparable to the original color image. Besides, notice the transi-
tion between the yellow feather and cyan feather of the parrot. Our
colorization gives fluffy and faithful transition, while the result of
[1] has too sharp and cartoon-like transition.

The proposed colorization method has several potential appli-
cations. For instance in lossy color image compression, instead of
encoding all the color information of an image, the encoder removes
most of the chrominance and store the colors of a few scattered pix-
els; then the decoder applies the proposed method to recover the
chrominance. By this means, the image codec can achieve better
compression ratios while keeping low distortions.

In Fig. 5, we present another application, that is, color transfer.
Consider an image pair of the same scene taken in dark environment,
one image is sharp but dim due to short exposure (Fig. 5(a)), while
the other one is bright but blurred due to long exposure (Fig. 5(b)).
We apply the proposed colorization method to recolor the sharp but
dim image (denoted as Isd) with color cues transferred from the
bright but blurred image (denoted as Ibb), such that the resulting
image looks bright and contains fine details. We first enhance the
luminance of Isd then use image registration technique (SIFT and
RANSAC [12]) to align Ibb and Isd. Since Ibb is well-exposed and
contains correct color characteristics, we select a few scattered pix-
els from Isd and seek for their corresponding colors in Ibb according
to the alignment. After that, we denoise the luminance of Isd, and
apply the proposed method to recolor it with the color pixels trans-
ferred from Ibb. As a result, we combine the luminance of Isd and
chrominance of Ibb to obtain a visually pleasing image (Fig. 5(c)).
To select the color pixels from Isd, we use the same uniform sam-
pling scheme as that in Fig. 4(a). Of course, rather than using image
registration, one may consider applying example-based colorization
methods (e.g., [2]) to transfer color cues to Isd then proceeds by our
algorithm, such that one may achieve better colorizations.

(a) (b) (c)

Fig. 5. Color transfer using the proposed method. (a) Sharp but dim
image. (b) Bright but blurred image. (c) Color transfer result.

6. RELATION TO PRIOR WORK

Our work is partially inspired by Mairal et al.’s work [7], where they
seek for sparse representations of image patches that are consistent
with the given noisy patches. The work [7] achieves state-of-the-
art performance in denoising, inpainting and demosaicing, but it is
not capable of coloring images. Actually, their method stems from
the K-SVD-based denoising algorithm [8], which limits its usage.
Moreover, [7] is specifically tailored to work in RGB color space and
it treats all the color channels equally. Different from that, we work
in YUV color space and differentiate the importance of chrominance
from luminance, which makes our formulation different from that of
[7]. Besides, we also develop an effective scheme to guide the colors
to propagate across the whole image iteratively.

On the other hand, our work is also closely related to Levin et
al.’s work [1]. By assuming neighboring pixels with similar intensi-
ties should have similar colors, Levin et al. treat image colorization
as an optimization problem and obtain photo-realistic colorizations;
while our method endeavors to represent the image patches with a
small amount of learned color atoms. Note that for a color atom in
our YUV dictionary, adjacent pixels having similar intensities also
have similar colors (Fig. 2) because the atoms are learned from nat-
ural color images. Therefore in our method, the assumption used in
[1] is automatically learned during the dictionary learning process
(Section 2). In other words, Levin et al.’s assumption is implicitly
satisfied in our work, though our approach appears to be very differ-
ent from theirs [1].

7. CONCLUSION

In this work, we tackle the problem of image colorization from the
aspect of sparse representation. We first train an over-complete dic-
tionary in YUV color space. Taking a grayscale image and a small
subset of color pixels as inputs, we colorize overlapping patches
by seeking for sparse representations that are consistent with both
the luminance and the known chrominance. The intermediate col-
orized image is then obtained by aggregating the colorized patches
with weights. This colorization process iterates until the colors are
properly propagated across the entire image. Experiments and com-
parisons show that our method leads to high-quality colorizations in
terms of CPSNR. To demonstrate the applications of our method, we
use it to transfer the color of one image onto another to obtain a new
image. Future improvements may focus on extending the current
algorithm such that it also accepts scribble-based color cues.
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