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ABSTRACT

The Minimum-Variance Pseudo-Unbiased Reduced-rank Estimator
(MV-PURE) is designed, as a natural reduced-rank extension of the
Gauss-Markov estimator, for the unknown deterministic vector in
ill-conditioned linear regression model. In this paper, we propose
a novel rank-selection for the MV-PURE to achieve a small Mean
Square Error (MSE). The proposed rank-selection is realized by min-
imizing an unbiased estimate of the predicted-MSE, not of the MSE.
Our unbiased estimate can be applicable to any noise distribution
with zero mean and a finite covariance matrix, while Stein-type un-
biased criteria cannot in general. We apply the proposed selection to
an image restoration problem and introduce its efficient O (m log m)
implementation by using a special structure found in typical blur ma-
trices, where the blur matrix is of size m X m. A numerical example
demonstrates that the MV-PURE with the proposed rank-selection
achieves a MSE comparable with the minimal MSE for the unknown
vector among all possible ranks.

Index Terms— linear model, ill-conditioned, reduced-rank es-
timator, unbiased predicted-MSE criterion, image restoration

1. INTRODUCTION

Ill-conditioned linear parameter estimation problems arise in wide
range signal processing applications. A main goal of the problems
is to estimate an unknown deterministic vector 3 € R™ by using
an observation y € R™ modeled by the multiplication of 5 and
a known model matrix € R™*"™ having a small singular value,
with additive noise. Unfortunately, the Mean Square Error (MSE)
of 3, a standard criterion of estimate, cannot be minimized without
complete knowledge on the unknown vector. For this reason, many
estimators have been proposed to suppress somehow the MSE. One
of the most well-known classical techniques is the Best Linear Unbi-
ased Estimator (BLUE, or Gauss-Markov Estimator) [1, 2, 3], which
works poorly because small perturbation in the observation y may
result in unacceptably large error in the estimate.

For the ill-conditioned problems, the Minimum Variance Pseudo-
Unbiased Reduced-rank Estimator (MV-PURE) has been proposed
[4, 5]. The MV-PURE is designed, as a natural reduced-rank exten-
sion of the BLUE, to achieve a small MSE. The MV-PURE includes
a classical reduced rank estimator [6, 7] as its special example. In
many situations, by imposing an appropriate rank constraint, the
MV-PURE outperforms commonly used regularization techniques
[8]. Practical applications of the MV-PURE are found in e.g. [9, 10].

In this paper, we propose a rank selection criterion of the MV-
PURE based on an unbiased estimate of the predicted-MSE, i.e., the
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MSE for LS. Suppressing our proposed criterion is necessary be-
cause the criterion is a lower bound of the MSE for /3 up to a con-
stant factor in the mean value and is much more robust in terms of
the variance than an unbiased criterion of the MSE for /3 against the
ill-conditioned case. Thanks to focusing on the MV-PURE (more
generally, affine estimators), our proposed unbiased predicted-MSE
criterion can be applicable to any noise distribution with zero mean
and a finite covariance matrix, while Stein-type unbiased criteria
(e.g., [11, 12]) cannot in general. To examine the performance, the
MV-PURE with the proposed rank selection is applied to an image
restoration problem [13, 14]. Fortunately, in typical scenarios, we
obtain an efficient O(m logm) implementation of the MV-PURE
with the rank minimizing the proposed criterion, where we assume
as in [15] the model matrix of size m X m is diagonalizable by a
computationally efficient orthogonal matrix (e.g. DCT, FFT, etc).
The numerical example demonstrates that (i) the proposed unbiased
predicted-MSE criterion is much more robust than an unbiased cri-
terion of the MSE against the ill-conditioned blur matrix, (ii) the
rank minimizing the proposed criterion is almost identical to the one
minimizing the MSE, and (iii) the MV-PURE with the proposed rank
selection can be implemented efficiently and achieves a MSE com-
parable with the minimal MSE for the unknown vector among all
possible ranks.

2. PRELIMINARIES

2.1. Linear regression model

In the linear regression model, it is assumed that we can observe a
data vector y € R™ modeled by

y=LB+e M

where L € R™*™ is a known model matrix (of full column rank 772)
with an SVD'

L=USV'=) oy, )

=1

"The singular value decomposition (SVD) of a matrix X € R"X™ jg
given by

min(m,n)

X=pP2Q'= >

i=1
where P = (p1,p2,---,pn) € R™*",Q = (q1,92, .., qm) € R™X™
are orthogonal matrices and ¥ € R™*"™ contains on its main diagonal the
singular values o1 . .., Omin(m,n) Of X and O’s elsewhere. Without losing
generality, we assume that all SVDs considered have singular values orga-
nized in nonincreasing order, thatis, o1 > o2 > ... > oy (x) > 0 and

os = 0 for s > rk(X), where rk(X) stands for the rank of X.

t
0iPiq;,
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B € R™ is an unknown deterministic vector to be estimated and
€ € R" is a random noise vector with zero mean and positive def-
inite covariance matrix Efec’] = 0?Q € R™*™, where E denotes
expectation and o > 0. Assume that we have auxiliary knowledge
that the unknown vector 3 € R™ is an element of the null set of a
matrix A € R**™ (rk(A4) < m)

N(A) :={BeR™|AB=0}#2
onto which the metric projection is given as
O\ \t
o) N
where N € R™*™ is an orthonormal matrix defined by eigen-
decomposition of A*A.

The goal of the linear estimation problem is to estimate the un-
known vector 3 = Pp(ayz (Vz € B+ N(A)1) by

B = Py,

where ® € R™*™ is a constant matrix called here an estimator.
More precisely, the major goal is to find  suppressing the Mean
Square Error (MSE) of &y

J(®) :=E(|®y — 8]|*) 3)
= 07 tr(PQP") + [(PLPr(ay — Pray)z|

variance bias2

(Vze B+N(A)Y),

Im*r
Pryay=N ( Ok(A)

where E denotes expectation and || - || denotes the Euclidean norm.
The critical problem is that 3 is unknown, hence it is impossible to
minimize J directly.

2.2. Minimum-Variance Pseudo-Unbiased Reduced-Rank Esti-
mator (MV-PURE)

The Minimum-Variance Pseudo-Unbiased Reduced-rank Estimator
(MV-PURE) has been derived as a natural extension of the Gauss-
Markov estimator to the case of reduced-rank estimator, with the
unknown vector possibly subjected to linear (more generally, affine)
constraints. The MV-PURE is the solution of the following problem:
For a givenrank r € {0,1,...,m},

min tr[®rQ(®))"]
st. ®. € N Py, )
eJ

LA ={X €

where Py := argmin [|®,.LPp(a) — Pyl
Prex X
R™*™ | rk(X) < r}, and J is the index set of all unitarily invariant
norms”.
A closed-form solution of (4) [5] is given as

MVP S-St O tr It —1/2
o ’_N(O O)N(L)Q ) ©)

2We denote by 7 the index set of all unitarily invariant norms on R™*™
(i.e., norm satisfying |[UX V|| = || X|| for all orthogonal U € R"*X" V &
R™*™ and all X € R"*X™ see, e.g., [16]). In particular, note that the
following widely used norms are unitarily invariant: the Frobenius norm

IX|lp = Ver[XIX] = /S0 5 the spectral norm [| X ||z =

max{v/X | \an eigenvalue of X*X} = ~1, and the trace (nuclear) norm

Xl = 25"

where L' := Q_1/2LPN(A), S, € RM—k(ANXr i¢ an semi-
orthonormal matrix whose range is r-minor eigensubspace of®
[Nt (LI)T (L,t)TN]sub(mfrk(A)) X (m—rk(A))- Herey Xsub(gx o) is the
0 X g principal submatrix of X € R™*™,

Selection of the rank 7 of the MV-PURE is important to suppress
the MSE of the estimate ®XVF (y). To see this clearly, let’s consider
the typical situation where we do not have any auxiliary knowledge
on f,i.e., A = O, and the noise ¢ is white, i.e., Q = I,. If we
simply set r = m, the MV-PURE reproduces the BLUE, of which
resulting MSE is

0

From (6), we observe that the BLUE yields inherently a drastic inad-
equacy when the linear regression model (1) is ill-conditioned, i.e.,
when L possesses very small singular values.

3. PROPOSED RANK SELECTION AND APPLICATION IN
IMAGE RESTORATION

In this paper, considering the ill-conditioned nature of L, we propose
a rank selection criterion of the MV-PURE based on an unbiased
estimate of the MSE for LJ.

3.1. An unbiased weighted-MSE criterion
Our general criterion is the following®:

Proposition 1 For any user-defined matrix G € R™*": G # O, a
criterion

JO I R™ SR
JS(®) := |GLy — Gyl 4 20° tr(GL®QG")  (7)
— o2 tr(GQGY)
is an unbiased estimate of the so-called weighted MSE as well as an
lower bound of the MSE up to a scale factor in the mean value, i.e.,
E [Jf(cp)} — E[|GLy — GLA|?]
< (IGL|2)*J(®), ¥® € R™™. ®

Remark that the criterion (7) produces an unbiased MSE criterion
by G = (L'L)"*L*, or of an unbiased predicted-MSE criterion by
G = I,. Proposition 1 can be applicable to any zero mean distri-
bution with positive definite covariance matrix ¢>@Q, while each of
these criteria is identical to the SURE [11] or the predicted-SURE
[17, 18] under the Gaussian noise case.

3.2. Rank selection with an unbiased predicted-MSE criterion

We propose to select a rank of the MV-PURE by minimizing the
criterion (7) with (G, ®) = (I,,, ®MVF), ie.,
r* € argmin J," (@2V7),
0<r<m

3For a given matrix M € R™*", M represents the Moore-Penrose
pseudo inverse.

“In this paper, for simplicity, Proposition 1 is given only for linear esti-
mators. However, this result can be extended for affine estimators straight-
forwardly, which implies that our rank selection can be extended for the MV-
PURE with affine constraint case (see [5, Sec.Ill A-2]).
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where

Ty (@) = 1297 (y) — y)1? ©
+ 207 tr(LEMVF Q) — o tr(Q).

The inequality (8) with (G, ®) = (I,, ®XVF) shows that suppress-
ing E [JZ" (<I>,MVP)] is necessary for suppressing .J(®MVF). Un-
der the assumption that no auxiliary knowledge on [ is available,
i.e., A = O, the noise € is white Gaussian with Q = I,,, and L is

a symmetric matrix, the result in [19, Prop. 5] (or [20, Property 1])
implies that the variance of the criterion (9) is

E[(Jy" (27) = 129y (y) — LBI1*)?)

=20'n 4+ 40%||(LOMVT — L) LA|?, (10)
S . FLtry~trt
which is much lower than the variance of Jy (see Remark

below).

Remark (Variance of an unbiased MSE criterion):

Under the same assumption, the criterion (7) with (G,®) =
((L'L)7'LY, dMVFP), e,

TP @) = @ — (L' D Ll ab
+ 202 tr(@YMVPL(L L))
— o tr((L'D)™Y)

has a variance

B[CSE DT @MVF) | @dVP (y) — p)12)?)
=20 (271 + 407 | L7 @VF - LY LB,

which becomes large if 3 is ill-conditioned. On the other hand,
the variance (10) suggests that the proposed criterion (9) is much
more robust against the small singular values of L than (11). Hence
the proposed criterion (9) is more reliable than (11) under the ill-
conditioned case.

3.3. An efficient implementation of MV-PURE applied in image
restoration

We apply the MV-PURE ®}V* minimizing J." (®)'V"), to an im-
age restoration problem formulated as in (1), where y is a known
target image (in a vector expression), L is a known symmetric blur
matrix, and [ is an unknown desired image. For simplicity, we as-
sume that no auxiliary knowledge on 3 is available, i.e., A = O,
and the noise € is white, i.e., Q = I,. In addition, we assume as in
[15] that L is diagonalized by a computationally efficient orthogonal
matrix U, i.e., L = UTU" (Here, assume that the eigenvalues on the
main diagonal of I' organized in nonincreasing order of the absolute
values). A typical example of U is the Discrete Cosine Transform
(DCT) matrix.
For this case, the MV-PURE is reduced to

®MYF = U[trun, (DU,

where trun, : R™*"™ — R™*™ is defined by

truny(X) = (XS“‘ESQX@ 8)
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Fig. 1. A comparison of J," (®V") in (9) and le(,LtL) Lt (PMVP)
in (11), where the vertical axis indicates the value of each criterion
for a given rank r. The criterion J;" (®MVPY in (9) provides an ac-
~c7t —1rt
curate estimate of || L&MVT (y) — LB||%, while JS& 1) E (9MVP)
in (11) fails in estimating || ®MVF (y) — 8|2

with o € {0,1,...,m}. Thanks to the special assumption on U, we
can compute the MV-PURE with O(m log m). In addition, we can
minimize with O(m log m) multiplications the criterion (9)

H(trunr(Im) — Im)UtyH2 +20°%r — o®m,

by the following steps:
1. Compute & := (£1,€2,...,&m) = Uly € R™.

2. Compute o, := [|[trun,(I;,) — Im])€||® for each r €
{0,1,...,m} recursively:

am =0,
2
aj-1 = o5 + &5,

forj=m,m—1,...,1.
3. Find r* € argmin{a, + 202r},.

The complexity for these three steps is also O(m logm).

4. NUMERICAL EXAMPLE

We consider a problem for restoration of an image from the ob-
servation degraded by Gaussian blur and contaminated with white
Gaussian noise. We use ’cameraman’ image (256 x 256 [pixels],
see Fig. 2) as the unknown desired image 5 € R™. y € R™ is
a known target degraded image, L. € R™*™ is a known symmet-
ric blur matrix whose kernel is Gaussian (standard deviation is 2)
and L is diagonalized by the DCT matrix (see [15]); Then L is ill-
conditioned with condition number of 6.5538 x 10°. The additive
noise is A/(0,10™%).

Fig. 1 shows a comparison between j;" (<I>IT\WP ) in (9) and

jéLtL)flLt (®MVP) in (11). We observe that J}" (®}VF) succeeds



3

§ =10, = 6936 § =102, r = 27512

0 =6,r = 5769

5 =103, r = 48454

BLUE, r

65536

Fig. 2. Resulting images of the MV-PURE. “Proposed” is the resulting image of the MV-PURE minimizing (9). As the optimal rank, we
choose a rank achieving the smallest distance to the desired image among all ranks. The parameter ¢ is utilized for selecting a rank by (12).

Table 1. CPU time of our implementation of the MV-PURE.
CPU time [sec]

MV () for a given rank r 0.044
a minimizer of (9) and ®MVF (y) 0.077
in estimating ||L®MVF (y) — Lp||%, while jéLtL)ilLt (OMVP)

fails in estimating ||®MVF (y) — B||*. Moreover, the rank minimiz-
ing JE" (®MVP) in (9) can approximate well the one minimizing
|®MVF () — B||?, which shows that the proposed criterion is effec-
tive to select a proper rank.

Fig. 2 depicts the resulting images by the MV-PURE. We
choose the rank achieving the smallest distance to the desired image
among all ranks, as the optimal rank. The MV-PURE minimizing
Jim (®@MVP) is comparable with the MV-PURE with the optimal
rank. Although a heuristic rank selection suggested in [5]

au"gmax{2 < 5} (12)

or

also selects an appropriate rank for & € {6, 8, 10}, our rank selection
is advanced because it does not require tuning any parameters.
Finally, CPU time of our implementation is shown in Table
1. We measured on a laptop computer equipped with Intel Core
2 duo 1.6Ghz processor and 4GB of RAM. For given y and user-
defined rank 7, our implementation requires only 0.044 sec to
compute @MVP(y). Moreover, for given y, our implementation
requires 0.077 sec to obtain the result MV (y) with » minimizing

j;" (®MVP). That is, we can find a minimizer of (9) in time shorter
than the computation of ®MVF (y) for two different ranks.

5. CONCLUDING REMARKS

In this paper, we have proposed a rank selection criterion, based on
an unbiased estimate of the predicted-MSE, of the MV-PURE to
achieve a small MSE. The proposed criterion is necessary to sup-
press because it is a lower bound of the MSE in the mean value
up to a scale factor. Moreover, the proposed criterion is robust to ill-
conditioned cases, compared to the unbiased MSE criterion. Our un-
biased criterion can be applicable to any noise distribution with zero
mean and a finite covariance matrix, while Stein-type unbiased crite-
ria (e.g., [11, 12]) cannot. Hence the MV-PURE with our proposed
rank selection is applicable to many fields, e.g., image restoration,
function approximation [21], electroencephalography [9], and mag-
netoencephalography [10]. In image restoration setting, an efficient
O(mlog m) implementation have been introduced. A numerical ex-
ample demonstrated that the rank minimizing the proposed criterion
can approximate well the one minimizing the MSE, and the MV-
PURE with our rank selection achieves a MSE comparable with the
minimal MSE among all possible ranks.

It should be noted that the authors and Shimamura presented
preliminary results of this work in [21, 22] in Japanese. Recently,
an efficient iterative computation for the stochastic MV-PURE pro-
posed in [23], which also can be extended to the MV-PURE. Such
extension will be discussed elsewhere.
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