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ABSTRACT

The paper first describes an examplar-based image inpaint-
ing algorithm using a locally linear neighbor embedding
technique with low-dimensional neighborhood representation
(LLE-LDNR). The inpainting algorithm first searches the K
nearest neighbors (K-NN) of the input patch to be filled-in
and linearly combine them with LLE-LDNR to synthesize
the missing pixels. Linear regression is then introduced for
improving the K-NN search. The performance of the LLE-
LDNR with the enhanced K-NN search method is assessed
for two applications: loss concealment and object removal.

1. INTRODUCTION

Image inpainting refers to the problem of filling-in miss-
ing regions in an image [1]. Existing methods can be
classified into the following categories. The first category
concerns diffusion-based approaches which propagate level
lines (called isophotes) using partial differential equations
(PDE) [1–4] or variational methods [5]. The second cat-
egory concerns examplar-based inpainting methods which
have been inspired from texture synthesis techniques [6].
These methods exploit image statistical and self-similarity
priors. The texture to be synthesized is learned by sampling,
copying or by stitching together patches (called examplar)
taken from the known part of the image. These methods have
evolved over recent years with the introduction of variants re-
lated to the patch processing order [7], to fast search of similar
patches [8], or to the introduction of spatial coherence con-
straints [9]. Another category of approaches concerns meth-
ods using sparsity priors [10], [11], [12].

Instead of using a simple copy, the unknown pixels of the
patch to be filled-in can be approximated by a linear combina-
tion of several best matching patches (i.e. of K nearest neigh-
bors, K-NN), this way exploiting self-similarities within the
image. The authors in [13] use a similarity kernel to compute
the weights of the linear combination. This approach is in-
spired from the non-local means (NLM) algorithm used for
de-noising in [14] and for texture synthesis in [6].

This paper describes an examplar-based inpainting method

using linear combinations of neighboring patches in the same
vein as in [13]. However, instead of using a similarity kernel,
the weights are computed using locally linear embedding with
low-dimensional neighborhood representation (called LLE-
LDNR in the sequel) [15]. The method is a variant of lo-
cally linear embedding (LLE) [16] where the weights are
computed on a low-dimensional representation of the neigh-
borhood of the input vector instead of being computed in the
high-dimensional input space as in LLE [16]. The algorithm
searches for an approximation of the known pixels of the in-
put patch from its K-NN. This principle is known as neighbor
embedding (NE).

All NE methods require searching for K-NN. However, the
K-NN of the known pixels of the input patch may not lead to
good estimates of the unknown pixels. Therefore, we also in-
troduce a method for improving the K-NN search used in the
neighbor embedding step. The improvedK-NN search makes
use of subspace mapping functions learned with linear regres-
sion from patches in the known part of the image. The lin-
ear regression is also considered for estimating the unknown
pixels. The performance of LLE-LDNR and LR-based in-
painting solutions is studied in two application contexts: loss
concealment and object removal (or image editing), in com-
parison with state-of-the-art solutions.

2. EXAMPLAR-BASED INPAINTING:
BACKGROUND

The proposed algorithm builds upon the solution described
in [7] which proceeds as follows. Let I be the image and Ω
be the region to be filled in. Let φ = I − Ω be the known
(or source) region in the image. The algorithm iterates the
following steps until all missing pixels have been filled-in:

1. Computation of the priority of each patch located on the
fill front as P (p) = C(p)D(p), where the terms C(p)
and D(p) are defined as in [7]. The term C(p) is a confi-
dence term based on the ratio of the number of unknown
versus known pixels in the input patch. The term D(p)
is a data term which aims at favouring patches in which
the isophote is perpendicular to the front line in pixel p.
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2. Selection of the patch Ψp̂ (centered on a pixel p̂ located
on the fill front) with the highest priority, i.e.,

p̂ = argmax
p∈δΩ

P (p).

3. Search for the most similar patch Ψk
∗

(in the source im-
age φ = I − Ω) to the known samples Ψk

p̂ of the input
patch Ψp̂ to be filled-in (K-NN search).

4. The unknown pixels of the input patch are set to the val-
ues of the pixels at the same relative position in the best
matching patch (Ψ̃u

p̂ = Ψu
∗

). This method is called tem-
plate matching (TM).

5. Update of the confidence term C(p) used in the patch
priority computation.

Instead of using a simple TM, the authors in [13] com-
bine similar patches found in the known part of the image
with weights computed with a similarity kernel giving higher
weights to patches which are more similar to the known sam-
ples of the input patch. Given K-NN patches Ψi, i = 1...K,,

the weights are computed as αi = exp(−
‖Ψk

p̂−Ψ
k
i ‖

2

2

h
) where

h is a decay coefficient, and then normalized.

3. PROPOSED INPAINTING ALGORITHM

The proposed inpainting procedure differs from [7] summa-
rized above and from [13] in two main aspects: 1/- in the use
of a neighbor embedding technique (LLE-LDNR) instead of
a simple TM in step 4; and in 2/- the introduction of an en-
hancedK-NN search using locally learned subspace mapping
functions for step 3.

3.1. LLE and LLE-LDNR Neighbor Embedding

The algorithm searches for an approximation of the known
part of the input patch Ψk

p̂ from its K-NN Ψk
i , i = 1 . . .K .

The first step is therefore a K-NN search. The K-NN patches
Ψi, k = 1...K, are formed by pixels denotedΨk

i which are co-
located to the known pixels Ψk

p̂ and of pixels Ψu
i co-located

to the unknown pixels Ψu
p̂ . The weights of the linear com-

bination, constrained to sum to ”1”, can be computed in the
input space as in LLE [16], or on the low-dimensional neigh-
borhood representation as in LLE-LDNR [15].

LLE: In [16], the minimizing problem is formulated as

argmin E(W ) =

∥

∥

∥

∥

∥

Ψk
p̂ −

∑

i

wiΨ
k
i

∥

∥

∥

∥

∥

2

2

s.t.
∑

i

wi = 1; (1)

Each weight wi is computed as wi =
yi∑
i
yi

where yi is solu-

tion of the linear system (DTD)y = 1K. The term D denotes
the N1 ×K neighborhood matrix of the vector formed by the
N1 known pixels Ψk

p̂ of the input patch Ψp̂. The ith column

of the matrix D is Ψk
i − Ψk

p̂, where Ψk
i is the ith neighbor of

Ψk
p̂. The notation 1K stands for the column vector of ones of

dimensionK . The linear system of equations (DTD)y = 1K

is solved, and then the weights are rescaled so that they sum
to one.

LLE-LDNR: The weights are computed by searching for a
rank-d representation of the local neighborhood represented
by the matrix D [15]. This is done by computing the singular
value decomposition (SVD) of the matrix D as D = UΣV T ,
where U = [U1U2] and V = [V1V2] are orthogonal matrices
of dimension N1×N1 and K×K respectively, and Σ is a di-
agonal matrix of dimensionN1×K having the singular values
of D on its diagonal. The parameter d is the dimension of the
low-dimensional space in which are assumed to lie the input
data (texture patches). In the experiments reported in Section
4, the parameter d has been taken as d = ⌊K/2⌋, where K is
the number of nearest neighbors taken in the embedding.

The matrices U1 and U2 contain the first d and last K − d
columns of U , and V1 and V2 contain the first d and N1 − d
columns of V respectively. The weight vector for the d-
dimensional neighborhood of the known samples of the input
patch is searched in order to minimize WTDPD

T
PW where

DP represents the best rank-d representation of D. The so-
lution is not unique and is taken as the vector in the span
of Ud+1, . . . UK that has the smallest l2 norm leading to the
closed form expression [15]

wi =
U2U

T
2 1K

1TKU2UT
2 1K

(2)

LLE captures the data structure in the high dimensional
space, whereas LLE-LDNR captures the data structure in the
low dimensional space. As a result LLE-LDNR weights are
less sensitive to noise. For both methods, once the weights to
approximate the known part Ψk

p̂ of the input patch have been
found, they are applied to estimate the unknown part as

Ψu
p̂ =

K
∑

i=1

wiΨ
u
i (3)

3.2. K-NN search using learning subspace mappings

The K-NN to the known pixels of the input patch may not
be the best patches for approximating the unknown pixels,
especially in the case where there are discontinuities within
the patch. In order to have K-NN patches which are relevant
for the unknown part, the idea is to use mapping functions
between subspaces corresponding to known Ψk

i and unknown
Ψu

i parts of complete patches.
Let X be a matrix whose columns are vectors of dimen-

sion N (size of the complete patch) formed by all candidate
patchesΨi, i = 1 . . . L (training patches), taken from a search
window in the known part of the image. The parameter L de-
notes the number of patches in the search window. Let Xk and

1559



Xu be matrices whose columns are vectors of dimensions N1

and N2 formed by the subsets Ψk
i and Ψu

i of pixels located
in Ψi at the same respective positions as the known and un-
known pixels of the patch to be filled-in. Two mapping func-

tions F1 : Xk
F1−→ Xu and F2 : Xk

F2−→ X are learned using
multivariate linear regression as

F1 = XuX
T
k (XkX

T
k )

−1 (4)

F2 = X XT
k (XkX

T
k )

−1 (5)

The known part Ψk
p̂ of the input patch is projected (or

mapped) via F1 into R
N2 as

Ψk
p̂ ∈ R

N1
F1−→ Ψ̃u

p̂ ∈ R
N2 (6)

This projection actually computes an estimate Ψ̃u
p̂ = F1 ×

Ψk
p̂ (via linear regression) of the unknown pixels of the input

patch. This estimate can be used directly as the inpainted
pixels, leading to a method referred to as Linear Regression
(LR)-based inpainting in the sequel. It can also be used to
help the K-NN search needed in the neighbor embedding.

Instead of considering only the K-NN to the known pix-
els Ψk

p̂ (which may not be good candidates for approximat-
ing the unknown part of the input patch), we also search for
the K-NN to the LR estimate Ψ̃u. Among the resulting 2K
patches, we retain, for applying the neighbor embedding, the
K patches which are the closest to Ψ̃p̂ which results from the

projection Ψk
p̂

F2−→ Ψ̃p̂.

4. EXPERIMENTAL RESULTS

The methods have been assessed in the context of two ap-
plications: loss concealment and object removal. In the ob-
ject removal application, the ground truth is not known. The
performances can, in this case, only be assessed visually, the
inpainted images must look as natural as possible. In the ex-
periments, each processed patch is of size 11 × 11. For the
methods combining neighboring patches (NLM, and all the
other NE methods), the maximum number of patches consid-
ered has been set to Kmax = 10. However, the actual number
of neighbors used varies from one patch to the other. One
keeps only the most similar patches for which the distance
to the input patch Ψp̂ is below d1 + δ × d1, where d1 is the
distance of the most similar patch. In the experiments, the δ
parameter has been set to 1.5.

4.1. Loss concealment

Fig. 1 shows the test images for the loss concealment sce-
nario. The missing blocks are of size 32 × 32. The size
of the K-NN search window (centered on the patch to be
filled) has been set to 100 × 100 for the House image and to
60 × 60 for the smaller images Barbara and Foreman. Table
4.1 gives the PNSR values obtained when inpainting the test

images shown in Fig.1, with TM, NLM, LLE, LLE with en-
hanced KNN search (noted LLE-LR), LLE-LDNR, and LLE-
LDNR with enhanced K-NN search (noted LLE-LDNR-LR).
It also gives the results obtained when using linear regression
(LR) to directly estimate the unknown pixels. All the results
have been produced in an automatic way (with no supervi-
sion). The right column of the table gives the results obtained
with a diffusion-based method [3]. The code used for simu-
lating the method in [3] is the openCV implementation. This
table shows superior performance of the LLE-LDNR solu-
tion compared to the other NE solutions. Its superior perfor-
mance compared to LLE results from a more robust embed-
ding (weight computation) capturing dominant features in the
low-dimensional space. It also shows the gain brought by the
enhanced K-NN search. Fig. 2 shows the visual quality ob-
tained with some of the methods.

4.2. Object removal

In the context of object removal (image editing application),
we have observed that a better visual quality was obtained
by limiting the size of the search window to a small value
(40 × 40). Fig. 2 shows inpainting results obtained for the
Terrasse image with the different solutions. The most natu-
ral inpainted images have been obtained with the LLE-LDNR
neighbor embedding method. Since the holes to be filled-in
are quite large, the inpainting task is not easy and diffusion-
based approaches introduce blur into the image. When we
compare the proposed methods with other exemplar-based
methods including [7] and [8], more natural looking images
with better preserved structures have been obtained. The
method based on low rank tensor completion proposed in
[17] has also been considered for comparison. However, this
method works well only when the missing area is not too large
or when the rank of the image is quite low, which is in general
not the case for loss concealment or object removal scenarios.

5. CONCLUSION

This paper describes an image inpainting algorithm using
LLE-LDNR neighbor embedding. In addition, the paper con-
siders linear regression for improving the K-NN search as
well as for estimating unknown pixels. Experimental results
in two applications (loss concealment and object removal)
show superior performances of the LLE-LDNR solution over
other neighbor embedding solutions. Although, only compar-
isons with NLM and LLE are given here, tests have shown
better performance than with Non-Negative Matrix Factoriza-
tion as well. The results also show further gains when using
the proposed enhanced K-NN search using linear subspace
mappings in the context of inpainting.

Acknowledgement: This work has been partly funded by
the ANR-ARSSO project.
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Fig. 1. Test images with holes (black rectangles). The three first images called House (8.71 dB with the holes), Barbara (13.37
dB with the holes), and Foreman (9.92 dB with the holes) are used for the loss concealment scenario and the last one called
Terrasse is used for the object removal scenario.

Methods TM [7] NLM LLE LLE-LR LLE-LDNR LLE-LDNR-LR LR diff. [3]

House 24.07 24.51 25.05 25.05 26.18 26.44 26.19 25.30
Barbara 22.68 23.06 23.86 24.54 24.42 24.93 25.01 23.87
Foreman 24.35 24.68 25.01 25.47 27.08 27.80 25.30 25.22

Table 1. PSNR (in dB) in the context of loss concealment (patch size w=11× 11, and δ = 1.5).

TM [7] NLM-sim. weights TM [7] NLM-sim. weights

LLE LLE-LDNR LLE LLE-LDNR

LLE-LDNR-LR Diffusion [3] LLE-LDNR-LR Diffusion [3]

Fig. 2. Results for the House image (loss concealment) and for the Terrasse image (object removal).
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