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ABSTRACT
In this paper we are interested in regularizing hyperparameter
estimation by maximum likelihood in inverse problems with
wavelet regularization. One parameter per subband will be
estimated by gradient ascent algorithm. We have to face with
two main difficulties: i) sampling the a posteriori image distri-
bution to compute the gradient; ii) choosing a suited step-size
to ensure good convergence properties. We first show that
introducing an auxiliary variable makes the sampling feasi-
ble using classical Metropolis-Hastings algorithm and Gibbs
sampler. Secondly, we propose an adaptive step-size selec-
tion and a line-search strategy to improve the gradient-based
method. Good performances of the proposed approach are
demonstrated on both synthetic and real data.

Index Terms— Parameter estimation, Maximum likeli-
hood estimation, Wavelet transforms, Deconvolution, Gradi-
ent methods

1. INTRODUCTION

We are interested here in solving inverse problems, the direct
formulation of which can be written as

g = Au+ η, (1)

where g (vector of dimension k) denotes the observed image,
A (matrix of dimension k × k) denotes a linear operator (e.g.
blur) which is assumed to be known and non necessarily in-
vertible and finally, η ∼ N (0, σ2 I) models an additive white
Gaussian noise of known variance σ2.

Restoring u from g is an ill-posed inverse problem which
must be regularized. We consider in this work regularization
in the wavelet domain [1, 2, 3, 4, 5, 6], by minimizing a con-
vex criterion given by

J(u) =
‖g −Au‖2

2σ2
+

M
∑

m=1

λmφm(Fmu). (2)

The first term corresponds to the negative log-likelihood in
the Gaussian white noise case, the second one is the regu-

larization term in the wavelet domain: Fmu denotes a sub-
band and F represents the global orthogonal wavelet trans-
form operator [7]. Functions φm model distributions of the
wavelet coefficients and are chosen to be ℓ1-norms on all the
subbands. The resolution level and the number of channels
(dyadic, Q-band) of the decomposition determine the finite
number M of subband m = 1, ...,M .

Tuning more than two hyperparameters by an exhaus-
tive search is prohibitive. As the restoration results are very
sensitive to these hyperparameters λ = (λm=1,...,M )m, we
propose an automatic estimation. Well known state of the
art methods as discrepancy principle based methods [8, 9],
cross-validation methods [10] or Stein principle based ap-
proaches [5, 11] are mainly restricted to the estimation of one
hyperparameter only. Other stochastic methods such as Max-
imum Likelihood (ML) approaches [12, 13], EM algorithms
(Expectation-Maximization) [14, 3], or MCMC (Monte Carlo
Markov Chain) based sampling methods [15, 16], allow the
estimation of several hyperparameters but have to face with
sampling difficulties.

We adopt a ML strategy which allows us to take advantage
of the good asymptotic properties of the ML estimator and to
estimate a vector of hyperparameters. However, applying a
gradient ascent algorithm to compute ML hyperparameter es-
timates is dramatically prohibitive in terms of time computing
for two reasons. First, computing the gradient of the likeli-
hood function requires to sample the a posteriori distribution,
whose energy is defined by (2) [17]. Direct application of
Gibbs sampling and Metropolis-Hastings is not possible due
to the simultaneous presence of operators A and Fm in (2).
Second, gradient ascent methods converge slowly and much
attention have to be paid to step-size determination. Our con-
tribution in this paper is double. First, inspired by the ap-
proach described in [4], we propose to introduce by inference
an auxiliary variable which separates operatorsA and F in the
criterion. Second, we exploit an adaptive step-size selection
and a line-search strategy by defining a two phase algorithm
increasing the convergence speed of the gradient ascent algo-
rithm.
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The remaining of this paper is organized as follows. Sec-
tion 2, describes the adopted Maximum Likelihood strategy
and shows that an auxiliary variable must be inserted to be
able to perform samplings. The proposed two phases gradient
method is then described in Section 3. Results are shown in
Section 4 and Section 5 concludes the paper.

2. MAXIMUM LIKELIHOOD ESTIMATION OF THE
HYPERPARAMETERS

2.1. Classical approach

The ML estimation of the vector of hyperparameters λ =
(λm)m=1,...,M consists in maximizing pλ(g) w.r.t λ where
pλ(g) is given by:

pλ(g) =

∫

u

pλ(g, u)du =

∫

u

p(g|u)pλ(u)du. (3)

The integration domain of u is [0, 255]k where k represents
the number of elements in u (e.g. number of pixels for a 2D
image).

In our context, we can easily derive that

p(g|u) =
1

Kσ
exp

(−‖g −Au‖2

2σ2

)

(4)

where Kσ = (2π)k/2σk and

pλ(u) =
1

Zλ

M
∏

m=1

exp (−λmφm(Fmu)) (5)

where

Zλ =

∫

u

exp (−
M
∑

m=1

λmφm(Fmu))du. (6)

The maximization of pλ(g) with respect to λ can be per-
formed using a gradient method [12] and thus requires to
compute the derivatives of pλ(g) w.r.t. each element of λ.
After some calculations and by invoking the Lebesgue domi-
nated convergence theorem we obtain

∂ log pλ(g)

∂λm

= Eλ[φm(Fmu)]− Eσ,λ[φm(Fmu)] (7)

where the first expectation is defined according to the a priori
law (5) and the second one, according to the a posteriori law

pσ,λ(u|g)=
exp

(

−‖g−Au‖2

2σ2 −
∑M

m=1 λmφm(Fmu)
)

∫

u exp
(

−‖g−Au‖2

2σ2 −
∑M

m=1 λmφm(Fmu)
)

du
.

(8)
The problem here is that, contrary to the first expectation, the
second expectation cannot be computed analytically and we
have to generate samples according to (8) in order to estimate

it by an empirical mean. To this end, we have to tackle the
pixel dependence induced by A and this can be done by per-
forming the calculations in the Fourier domain, where A can
be diagonalized. However, this is not sufficient as F cannot
be diagonalized in the same space. Operators A and F must
be split.

2.2. Decoupling of the linear operators

This splitting can be done by adopting the approach described
in [4]. Indeed, the authors proposed to introduce an auxiliary
variable w (hidden variable) and thus, they show that

‖g −Au‖2

2σ2
= min

w

1

2σ2µ

(

‖u− w‖2 + 〈Cw,w〉
)

+
1

2σ2

(

‖g‖2 − 2〈Au, g〉
)

, (9)

where C = B(I − B)−1 and B = µA∗A (µ such that
µ‖A∗A‖ < 1). This means that a new criterion can be
considered instead of (2) which is given by

J(u,w) =
1

2σ2µ

(

(w−(I+C)−1u)T(I+C)(w−(I+C)−1u)
)

+
1

2σ2

(

‖g −Au‖2
)

+

M
∑

m=1

λmφm(Fmu) (10)

as (I + C)−1 = I − µA∗A. Note that it is shown in [4] that
minimizing J(u) w.r.t u is equivalent to minimize J(u,w)
w.r.t (u,w).

We have shown [18] that pλ(g) =
∫

u,w pλ(g, u, w)dwdu
and we can see from (10) that variables g and w are indepen-
dent conditionally to u. Consequently, similarly to Section
(2.1), we can derive an ML estimation of the parameters by
maximizing pλ(g) which is now given by

pλ(g) =

∫

u,w

p(g|u)p(w|u)pλ(u)dudw (11)

where p(g|u) is still defined by (4), pλ(u) is still defined by
(5) and

p(w|u) =
exp

(

− (w−(I+C)−1u)T(I+C)(w−(I+C)−1u)
2σ2µ

)

Kµ

(12)
is a Gaussian law N

(

(I+C)−1u, σ2µ(I+C)−1
)

, with Kµ =

(2πσ2µ)k/2(det(I + C))−1/2.
The maximization of pλ(g) with respect to each param-

eter λm requires also the computation of the derivatives
of pλ(g) w.r.t. each λm and leads to (invoking again the
Lebesgue dominated convergence theorem):

∂ log pλ(g)

∂λm

= Eλ[φm(Fmu)]− Eσ,λ,µ[φm(Fmu)]. (13)
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Again, the first expectation can be computed analytically
while for the second one, we have to generate samples ac-
cording to the a posteriori law pσ,λ,µ(u,w|g). Contrary to
the previous case, the sampling is now possible in reasonable
computing time as J(u,w) can be rewritten as

J(u,w) =
1

2σ2µ

(

‖u− w‖2 + 〈Cw,w〉
)

+
1

2σ2

(

‖g‖2 − 2〈u,A∗g〉
)

+

M
∑

m=1

λmφm(Fmu). (14)

In this second configuration, variables u and w are now
decoupled and they can be both estimated in two decorrelated
spaces (wavelets for u, Fourier for w).

2.3. Metropolis within Gibbs algorithm

The sampling according to the a posteriori law can be done
using a two steps algorithm that alternates a Gibbs sampler
and a Metropolis Hastings procedure [19]. Indeed, to sample
according to pσ,λ,µ(u,w|g):

1. We first generate (Gibbs sampler) samples according to
p(w|u) given by (12) (Gaussian law). The variable w is
directly expressed in the Fourier transform domain as
the covariance matrix can be diagonalized easily;

2. Secondly, having a generation of w samples, we gener-
ate u samples or more precisely, directly wavelet trans-
form coefficients (Metropolis Hastings algorithm) ac-
cording to pλ(u|w, g) where:

pλ(u|w, g) ∝ exp
(

−
1

2σ2µ
‖Fu− Fw‖2

+
1

σ2
〈Fu, FA∗g〉 −

∑

m

λmφm(Fmu)
)

. (15)

3. PROPOSED ALGORITHM

3.1. Classical gradient ascent

As mentioned previously, parameters λm are computed by
launching a gradient ascent (GA) algorithm [12] which can
be written here as, ∀m ∈ {1, . . . ,M},

λ(n+1)
m

= λ(n)
m

+ αn

[

Eλ[φm(Fmu)]

−
2

L

L
∑

l=L/2+1

φm

(

Fmu(n)
σ,λ(n),µ

)

l
)
]

. (16)

The first expectation is computed analytically (closed-form
expression for the chosen φm) and

(

u(n)
σ,λ(n),µ

)

l
denotes the

l-th sample generated according to the a posteriori probability
density p

λ(n)(u,w|g). Here, L denotes the number of com-
puted samples and L/2 samples are required to initialize the

chain. The parameter αn represents here the step-size of the
algorithm and can vary along with the iterations. The choice
of this step-size is crucial and directly governs the algorithm
convergence. For this reason, we decided to pay much atten-
tion to it as described later.

3.2. Acceleration

In order to accelerate gradient methods, an effective tech-
nique consists in using adaptive step-size rules for defining
the step αn along the gradient direction, combined with line-
search strategies that, if necessary, shorten the step for ensur-
ing suited improvements in the objective function. We ex-
ploit these ideas also for designing an accelerated gradient
approach for maximizing pλ(g). The main difficulty is due
to the fact that the objective function defined in (11) can’t be
evaluated and, as a consequence, standard line-search strate-
gies are not useful. To overcome this difficulty we develop
a two phases (2Ph) gradient method in which, firstly, a se-
quence of simple gradient steps are performed with the aim
to improve the objective function and, secondly, a line-search
that avoids using the objective function is introduced in the
iterative process for ensuring the reduction of the gradient
norm. The first phase consists in steps of the form (16) in
which the step-size is obtained by an adaptive alternation of
the well known Barzilai-Borwein values [20]:

αBB1
n = −

s T
n sn
s T
n yn

, αBB2
n = −

s T
n yn
y T
n yn

,

where sn = λ
(n)−λ(n−1) and yn=∇p

λ(n)(g)−∇p
λ(n−1)(g).

The adaptive alternation is derived from [21, 22] and de-
scribed in [23]. In the second phase a line-search strat-
egy similar to those proposed in [24] is used. Denoting
G(λ) = ∇pλ(g) and f(λ) = 1

2‖G(λ)‖2, this line-search
allows to sufficiently reduce f(λ) by performing an ascent
gradient step or moving along the descent direction for f(λ)
defined by q̄n(αn) = −(G(λ(n) + αnG(λ(n))) − G(λ(n)))
(for sufficiently small αn). Due to this reduction property,
in [24] it is proved that if there exists a limit point λ∗ of
{λ(n)} such that G(λ∗) = 0, then all the limit points of
{λ(n)} solve G(λ) = 0. Therefore, the second phase can be
exploited for stabilizing our iterative process by forcing the
approximation of a stationary point of pλ(g). The switching
between the two phases is performed with the aim to acti-
vate the line-search when the last iterations lay in a region in
which pλ(g) is concave. By recalling that when s T

n yn > 0
we may conclude that the function pλ(g) is not concave in
a set containing λ

(n),λ(n−1), we activate the second phase
when a sequence of N2 consecutive iterations always provide
positive BB step-sizes. Moreover, we ensure the switching
to the second phase after a prefixed number N1 > N2 of
iterations. The two phases algorithms can be described as in
Algorithm 1.
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Algorithm 1 Two Phases (2Ph) Gradient Method
Initialization: choose λ

(0) , α0 and θ, γ ∈ (0, 1); set flag(N1 ,N2)=0, n = 1,
λ

(1) =λ
(0) + α0G(λ(0)), gr0=f(λ(0)), gr=f(λ(1)) and an integer P ≥ 1.

Phase 1: (BB-like Gradient step)

WHILE

(

gr

gr0
> τg or

‖λ(n) − λ
(n−1)‖

‖λ(n)‖
> τλ

)

and flag(N1 ,N2) = 0

1.1 Choose αn and update flag(N1 ,N2);

1.2 Gradient Step: λ(n+1) = λ
(n) + αnG(λ(n)), n = n + 1;

1.3 Set gr = max0≤j≤min(n,P−1) f(λ
(n−j));

ENDWHILE

Phase 2: (Stabilization with line-search)

WHILE

(

gr

gr0
> τg or

‖λ(n) − λ
(n−1)‖

‖λ(n)‖
> τλ

)

2.1 Choose αn;

2.2 Line-search:

IF f
(

λ
(n) + αnG(λ(n))

)

≤ gr − γ‖α2
nG(λ(n))‖2 THEN

set λ(n+1) = λ
(n) + αnG(λ(n)) and n = n + 1;

ELSE IF f
(

λ
(n) − αnq̄n(αn)

)

≤ gr − γ‖α2
nG(λ(n))‖2 THEN

set λ(n+1) = λ
(n) − αnq̄n(αn) and n = n + 1;

ELSE set αn = θαn and go to Step 2.2;

ENDIF

2.3 Set gr = max0≤j≤min(n,P−1) f(λ
(n−j));

ENDWHILE

4. NUMERICAL RESULTS

In order to test our algorithm performances, we firstly ran-
domly generate wavelet coefficients according to the a priori
law (5) with realistic (for natural images) subband fixed pa-
rameters λm. We use Symlets [25] of length 8 over J =
2 resolution levels and each subband m is represented by
the triplet (j, l, c) where j is the resolution level index, and
(l, c)l∈{0,1},c∈{0,1} represents the low/high-pass filtered sub-
bands (the couple (1, 1) thus represents the diagonal coeffi-
cients). The size of the generated image is 128 × 128, it is
blurred using a Gaussian kernel A of standard deviation 0.5,
and Gaussian noise is added (of variance σ2 = 25).

The classical gradient ascent algorithm is launched over
400 iterations using a fixed step-size αn = 10−4 and the es-
timated parameters are computed as the mean value over the
last 50 iterations (as we have oscillations in the estimation
(see Fig. 2)). The two-phase algorithm uses these parameters:
P = 3, θ = 0.5, γ = 10−4, α0 = 10−4; N1 = 50, N2 = 10
for the switching rule and τg = 10−2, τλ = 10−7 for the stop-
ping rule. Both are initialized by applying a Wiener filter on
g. In Fig. 1 and Fig. 2 the behavior of two estimated hyper-
parameters over the iterations is shown for the two methods.
In Tab. 1 we report the number of iterations (it.) and gradient
evaluations (Grad.), the relative error in Euclidean norm of
the estimated parameters with respect to the theoretical values
(Errth.) and the values estimated by the ML approach on the
ground truth (ErrML) and the time in seconds (time). All the
test are executed in MATLAB on a quad core Intel i7 CPU.
We also considered two well-known images (Mandrill and
Barbara) and generated their blurred images by Gaussian ker-
nel A of standard deviation 2, and added Gaussian noise of
variance σ2 = 25. We applied the gradient methods to obtain

estimated hyperparameters and used them to restore the image
by means of a Forward-Backward algorithm [6]. In Tab. 2 we
report the values of Signal to Noise Ratio (SNR) calculated
on the corrupted image (SNRinit) and on the reconstruction
obtained with the estimated λ (SNRfin).

Fig. 1. λm behavior over iterations (m = (1, 1, 0))
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Fig. 2. λm behavior over iterations (m = (1, 1, 1))
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Table 1. Simulated Data
Alg. It. Grad. ErrML Errth. time
2Ph 61 90 0.007 0.021 431.8
GA 400 400 0.007 0.020 1920.5

Table 2. Real Data
Problem Alg. It. SNRinit SNRfin

Mandrill 2562 2Ph 883 12.1616 14.2324
GA 1000 12.1616 14.0051

Barbara 5122 2Ph 785 18.5272 19.5316
GA 1000 18.5272 19.3655

5. CONCLUSIONS

From Figures 1, 2 we can observe remarkable acceleration
of the hyperparameter estimation due to the suited choice of
the step-size in the first phase and fruitful stabilization in the
second phase given by the line-search strategy. Tables 1, 2
confirm the promising convergence rate improvements pro-
vided by the 2Ph algorithm with respect to the standard gra-
dient ascent method. These improvements are obtained with-
out losing the accuracy of the proposed ML hyperparameter
estimation.
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