
METHOD FOR ENHANCING LOW QUALITY DEPTH MAPS FOR 3D RECONSTRUCTION
ON A EMBEDDED PLATFORM

Rajesh Narasimha Karthik Raghuram Jesse Villarreal Joel Pacheco

Texas Instruments Inc, 12500 TI Blvd, Dallas TX 75243

ABSTRACT

In the recent past, vast amounts of stereo and augmented
reality based applications are being developed for hand-held
devices. In most of these applications depth map is a key
ingredient for acceptable user experience. Accuracy and
high density of depth map are important along with meeting
real-time constraints on an embedded system. There is an
inherent tradeoff between depth map quality and speed and
invariably performance is usually important for competing
in todays high-definition video marketplace. In this paper
we present a method that addresses depth map quality while
still maintaining performance at video frame-rates. Specifi-
cally, we discuss a technique to enhance a low-quality depth
map for 3D point cloud generation on an embedded plat-
form. We provide performance metrics and estimates on a
Texas Instruments (TI) OMAP embedded platform and show
that using simple pre and post-processing techniques one can
achieve both quality and performance. A preliminary version
of our point cloud application developed has a frame rate
of about 15fps, majority being display and rendering related
overheads. The core algorithms including pre and post pro-
cessing have a much higher frame rate of about 23-25fps.
We estimate that with adequate mapping of the algorithms to
various cores and accelerated kernels, the frame rate could
reach real-time performance of 30fps.

Index Terms— Embedded Platform, depth quality, TI
OMAP, multi-core, color/contrast match, 3D point cloud

1. INTRODUCTION

Depth estimation from multiple views is well studied and un-
derstood [1]. A commonly employed approach is to use a
calibrated stereo camera. Several techniques exist to com-
pute disparity and we consider one that has been implemented
on the OMAP embedded processor [2]. The goal of the pre-
sented algorithm is to enhance the quality of the computed
disparity map so that it could be used for applications such as
gesture recognition, segmentation/tracking or generate a 3D
point cloud of the scene. We shall not be concerned with
methods for generating such disparity maps, but rather as-
sume the presence of a simple technique for computing dis-
parity. Commonly used methods of computing disparity can
be found in [3] [4].

Given the real-time and power constraints to be met on em-
bedded systems, along with the poor quality of the image sen-
sors, the disparity maps generated often have regions in which
the computed disparity cannot be computed reliably. Such re-
gions may lack textures, have illumination artifacts such as
shadows, and have mismatches between the stereo pair in
terms of contrast and color. In this work, we describe tech-
niques that pre-process the stereo pair to improve robustness
of disparity estimation under such circumstances. Subsequent
to any pre-processing, we employ a dynamic disparity range
selection to improve disparity accuracy which tremendously
reduces the search range and improves frame rates. In ad-
dition, we match the color and contrast in the stereo image
using simple average RGB gains and a look up table (LUT)
based contrast correction.
Further enhancement may still be needed after the above pre-
processing to meet the quality demands of applications such
as 3D point-cloud computation or gesture recognition. Lack
of textures is a key reason for unreliable disparities. On the
other hand, this also implies that such regions in the scene are
rather smooth and hence suitable for interpolation. Through
experimentation and keeping in mind the computational com-
plexity, we interpolate the computed disparity map using a
multi-resolution approach. As a second step, we perform a
simple but selective linear interpolation on the generated dis-
parity, with a simple algorithm to detect the presence of holes
in the depth map. Finally, to generate a smooth disparity map,
we implement a bilateral filter based on the combination of
the algorithms provided by Yang et.al [5], Yu et.al [6] and
Porikli [7].
The organization of the paper is as follows. Section 2.1 below
describes automatic disparity range selection1. Section 2.2
describes a cross normalization algorithm for color and con-
trast in a stereo pair. Section 2.3 covers the multi-resolution
interpolation approach. Section 2.4 discusses the hole iden-
tification and interpolation on the point cloud. A short de-
scription of bilateral filter is provided in section 2.5. Evalu-
ation and performance estimates of a working prototype on
TI OMAP platform is provided in section 3. Conclusions and
Future are drawn in section 4.

1We do not discuss the conversion of disparity to depth as it is fairly stan-
dard. We use pre-calibrated tables for efficient disparity to depth conversion

1538978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

2. AUTOMATIC DISPARITY SEARCH RANGE
SELECTION

The block diagram of the proposed technique is shown in Fig-
ure 1. In the following sections we will describe the algo-
rithm in detail. The computational cost of the disparity map
algorithm is proportional to the disparity search range. There-
fore narrowing this search range dynamically based on rela-
tively fast object detection may lower the overall computa-
tional time of the desired disparity map calculation. For most
image segmentation problems, we are only interested in a nar-
row disparity range, and that this disparity range may change
over time because the camera, or the objects of interest may
move toward or away from the camera. If there are no objects
of interest found, the application may decide to either search
the full available range, or move to a lower power state, de-
pending on the application goals.

Next, we propose methods for detecting a limited search

Fig. 1. Block diagram of the proposed method to enhance a
low-quality depth map for 3D reconstruction

Fig. 2. Disparity computation of the object of interest

range using object detection algorithms. When the object(s)
of interest in the scene can be located from each of the stereo
pair images independently using object detection algorithms,
then the disparity range of this object can be used to narrow
the disparity search range of the disparity map computation.
For example, if there is an algorithm that returns a bound-
ing box of a face in each 2D image from the stereo pair, then
the disparity of this face is calculated by simply subtracting
the horizontal offset of this face in one of the images from
the horizontal offset of the same face in the other image. For
multiple objects in a scene we choose the nearest object and
in our use case the nearest face. Figure 2 above depicts the
disparity, d, of this face between the two images of a stereo
pair. The scenario with multiple faces needs much more so-
phistication for disparity calculation and we do not discuss it
here. Based on the known inverse relationship between dis-
parity and depth, we fit the following model to parametrize the
stereo system at hand. If d denotes the depth, D denotes the
disparity, we find parameters a, b such that

∥

∥d− (a
D

+ b)
∥

∥ is
minimum. With known depth measurements along the tape
measure, and the corresponding disparities from the stereo
pair, we setup a least-squares system and solve for a, b. Once

obtained, we use the same relationship to obtain depth d from
a disparity D from the stereo correspondences. Although this
can be applied to any object that can be detected, the example
of a face is used because face detection in digital cameras is
now a mature technology, and many camera platforms have
hardware accelerated face detection, such that it can be cal-
culated virtually for free in terms of CPU cycles. In the case
that the object detection can only be performed on one of the
images from the stereo pair, then the disparity can still be cal-
culated by comparing the size of the object in the image to the
expected size at different distances from the camera. This can
be done using a predefined equation or look up table. Once
the distance is known, then this directly translates to a dis-
parity value. Figure 3 shows an example of a distance to
disparity function obtained from the TI Blaze software devel-
opment platform, which features a stereoscopic camera pair
on the front of the unit. The object size to distance, and dis-
tance to disparity calculations/tables can be merged into a sin-
gle calculation/table, especially in the cases where there are a
small number of objects being detected. When multiple ob-
jects are being detected, it may be efficient to have the dis-
tance to disparity function calculated separately. With several
measurements, one may perform a least square reciprocal fit
to convert disparity to depth as prescribed by the stereo optics.

Fig. 3. Distance to Disparity Function

3. ENHANCEMENT OF LOW-QUALITY DEPTH
MAP

The reference (left) and the right stereo image pairs used in
our experiments are shown in Figure 4. This is the typical
output from a stereo sensor on consumer 3D digital cameras
and cellphone cameras. One can see a clear color and contrast
mis-match between the left and right stereo pair. The results
of depth map accuracy with and without disparity range se-
lection is shown in the bottom row of Figure 4.

3.1. Color/Contrast Matching for Stereo Images
The mismatch in color and contrast between the left and right
stereo pairs occurs due to low cost sensors, mismatches in the
imaging pipeline or in the mechanical elements of the camera
such as auto focus, aperture and auto exposure. Correcting
for such mismatch will improve the depth image and thereby
help in various post processing algorithms such as segmen-
tation and view synthesis. Moreover, the algorithm is well
suited for embedded platforms where usually low complex
stereo matching algorithms such as sum of absolute differ-

1539

ence or sum of squares of absolute difference based matching
are used.

Fig. 4. (Top row) Brightness and contrast mis-match between
L-R stereo pair, (Bottom row) Depth maps before and after
disparity range selection
3.1.1. Color Matching

In this step, we compute the average R,G, and B of a suf-
ficiently large area in the left image which is our reference
image. For a VGA image size of 640∗480 we choose a block
size of 64 ∗ 64. The intention is to match the color of the
right image to the reference image. We then search for the
matching area in the right image using simple sum of absolute
difference (SAD) between the left and right areas and find a
matching area. Once we find a matching block we compute
the average R, average G and average B of the reference and
the matched block. Alternately, we can compute the average
R,G,B of the entire left and right image or compute local
block averages and match the R,G,B values locally. To min-
imize the computation we compute the average R,G,B of the
entire image that does not require matching. Then we com-
pute the ratio between the right frame and the reference frame
as follows,

Rgain = Ravgright/Ravgref , R = R/Rgain

Ggain = Gavgright/Gavgref , G = G/Ggain

Bgain = Bavgright/Bavgref , B = B/Bgain

(1)

In equation 1 we match the average R,G,B of the right im-
age by scaling the R,G,B values by their respective gains.

3.1.2. Contrast Matching

The contrast matching algorithm is based on matching the his-
togram of the left and right image pair. We compute the lu-
minance histogram of the left and right images. Here again
we are matching the right luminance histogram to the left lu-
minance histogram. In Figure 5, one can see the difference
between the two histograms in terms of the brightness and
contrast. We compute a mapping function that matches the
right luminance histogram to the left luminance histogram in
the form of a look up table (LUT). The procedure is to com-
pute the cumulative distribution function (CDF) from the left

and right luminance histograms and generate a mapping LUT
to match the right CDF to the left CDF. We then check for
monotonicity of the mapping LUT. The top row of Figure 5
depicts the left and right histograms mis-match that has been
compensated for contrast mismatch as shown in the top right
figure where the left-right histograms overlap. The results
of the left/right stereo pair color and contrast matching on
the density of the depth maps is shown in the bottom row of
Figure 5. One can see that before matching the depth map
is sparse as in the bottom right of Figure 4 where as after
matching the depth map is denser which will facilitate easy
foreground segmentation.

Fig. 5. (Top row) Contrast matching using histograms. (Bot-
tom row) Left-Depth maps after left/right color and contrast
matching, RightDepth using multi-resolution approach

3.2. Multi-resolution Depth Map Computation

While pre-processing is a low cost preferred approach to
enhancing disparity, there may be several regions where dis-
parity could not be reliably computed at the given resolution.
In such cases, interpolation and hole-filling ideas are crit-
ical. In general, disparity computation in regions lacking
textures is hard as a unique match between left and pixel
neighborhoods is difficult if not impossible. However, one
can use the smoothness of these regions (lack of textures) to
interpolate the disparity values instead. A novel and effec-
tive interpolatory hole-filling procedure is described in what
follows. We start by constructing a disparity maps using a
multi-resolution approach. For example for a VGA frame
(640x480) one could have disparities computed at 320x240
and 160x120 sizes. The interpolatory process now selectively
fills the holes in the highest disparity image using a weighted
combination of the available lower resolution disparities.
Note that if no disparity is available at any lower resolution,
the pixel remains a hole even after the post-processing. For
purposes of demonstration, consider the stereo pair in Figure
4. The computed disparity map is as per the left figure in
the bottom row of Figure 5. In addition, we also perform
IIR filtering along with the interpolation process to fill in the
holes over time and avoid noisy depth values.

1540

Fig. 6. (Left)Depth after linear interpolation and bilateral fil-
tering, (Right)Foreground extraction

3.3. Hole Identification and interpolation

We describe a simple technique for identification of holes in
the disparity and a linear interpolation of such regions. In the
context of a point-cloud application, a dense disparity map is
particularly important in the foreground region. We therefore
employ adaptive thresholding of the relative depth to identify
foreground regions which is a fuction of the dynamic range
of the depth map. Since our depth map was 8-bit we chose a
threshold of 245 to identify foreground and produce a binary
map of every 8*8 block as foreground or not by counting the
pixels exceeding a threshold by taking care of boundary con-
ditions. We first perform erosion and dilation operation to fill
holes that are trivial to fill in and use Bilateral Filter to fill the
rest.

The advantage of the bilateral filter is that it has a range
and domain filter that can be specified to obtain smooth depth
maps which helps to avoid hole filling across boundaries. We
implemented a combination of the algorithms proposed in [6-
8]. The result of bilateral filtering along with binary mor-
phology such as erosion and dilation is shown in left figure of
Figure 6. We chose a 5x5 kernel for bilateral filter so that the
decision from filling does not occur from non-similar neigh-
bors. An example of foreground extraction is shown in the
right figure of Figure 6.

Fig. 7. Screen shots from a sample point cloud application
used for 3D reconstruction

3.4. Application: 3D point Cloud Generation

One practical application for the proposed method is in the
generation of a point cloud (a collection of X, Y, and Z co-
ordinates representing the location of objects in 3D space)
from a stereoscopic image pair. Using the techniques de-
scribed in this paper to improve the density of generated depth
maps, we can improve the accuracy and quality of the result-
ing point clouds, making them suitable for 3D reconstruction
applications. Figure 72 below contains screen shots extracted

2Please note that the figure 7 is different from the torso figures used
throughout the paper since it is a screen shot from the application running

from an example application Android application that recre-
ates what is seen through a stereoscopic camera.

4. PROTOTYPING ON TI OMAP PLATFORM

The TI OMAP platform has a dedicated camera pipe infras-
tructure which encapsulates several hardware acceleration
features including histogram computation, image resizing
and face-detection. The OMAP4430 SDP was running the
ARM cores at 1GHz, the DSP Core at 466MHz and the
Dual Image Co-Processors at 100MHzeach. Usage of such
hardware accelerated features greatly reduces the CPU load.
The object detection which in the presented use case is a face
and hence the use of face detection hardware does not affect
the frame rate. The color matching is also free in terms of
cycles since we have pre-computed block averages using the
hardware. The contrast matching uses a hardware histogram
module and is a low-cost LUT which again is negligible in
terms of cycles per pixel. In general, the block matching
based disparity estimation takes 40ms for a 320x240 frame
for 32 disparities on the DSP along with accelerated kernels.
Since we make use of the disparity search range selection
we can reduce the number of disparities to 16, which is ex-
ecuted in 25ms. We then use multi-resolution depth maps
at 160x120 and 80x60 frame sizes which is equivalent to
running 1.3125 times the original size and consumes 34ms.
The counting of foreground pixels for the purpose of identify-
ing foreground blocks is accelerated by executing the process
on a SIMD (single instruction multiple data) processor. For
example, multiple rows in the block-divided depth map is
processed in parallel using a DSP. To further reduce compu-
tational load, we build the foreground mask at a lower rate
than the video frame rate. In doing this, the foreground mask
can be reused for subsequent frames until a new mask is gen-
erated and we generate a mask for every 2 to 4 video frames.
The bilateral filter, in general is an expensive operation since
the range filter coefficients needs to computed dynamically.
However, recent advances (see [5], Yu et.al [6] and Porikli
[7]) have proposed constant time bilateral filters w.r.t to ker-
nel size, which is suitable for acceleration on OMAP and we
can parallelize the computation due to the dependency only
on the kernel size.

5. CONCLUSIONS AND FUTURE WORK

We have discussed simple but effective pre and post proc-
cesing techniques to enhance a low-quality depth map on a
embedded platform in real-time. As extensions, the pre and
post-processing stages may be mapped to the most suitable
core, and in our preliminary studies, point to real-time frame
rates of 30fps for QVGA frames. Thus, given reasonable
acceleration, the pre-post processing to improve depth map
quality are essentially free in terms of cycles per pixel, and
the overall frame rate is dominated by the standard disparity
computation algorithms at about 25− 30 fps.

on the OMAP platform

1541

6. REFERENCES

[1] Richard Hartley and Andrew Zisserman, Multiple View
Geometry in Computer Vision, Cambridge University
Press, New York, NY, USA, 2 edition, 2003.

[2] Texas Instruments OMAP, ,” www.ti.com/omap.

[3] Daniel Scharstein and Richard Szeliski, “A taxonomy
and evaluation of dense two-frame stereo correspondence
algorithms,” Int. J. Comput. Vision, vol. 47, no. 1-3, pp.
7–42, Apr. 2002.

[4] Myron Z. Brown, Darius Burschka, and Gregory D.
Hager, “Advances in computational stereo,” IEEE Trans-
actions On Pattern Analysis And Machine Intelligence,
vol. 25, no. 8, pp. 993–1008, 2003.

[5] Qingxiong Yang, Kar-Han Tan, and N. Ahuja, “Real-
time o(1) bilateral filtering,” Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pp.
557–564, June 2009.

[6] Wei Yu, Franz Franchetti, James C. Hoe, Yao-Jen Chang,
and Tsuhan Chen, “Fast bilateral filtering by adapting
block size.,” Image processing, 2010. ICIP 2010. IEEE
Conference on, pp. 3281–3284, 2010.

[7] F. Porikli, “Constant time o(1) bilateral filtering,” Com-
puter Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pp. 1–8, June 2008.

1542

