
DE-NOISING OF DISTANCE MAPS SENSED BY TIME-OF-FLIGHT DEVICES IN POOR 

SENSING ENVIRONMENT 

 

Mihail Georgiev
1
, Atanas Gotchev

1
, Miska Hannuksela

2
 

Tampere University of Technology, Tampere, Finland
1
;          Nokia Research Center, Tampere, Finland

2
 

ABSTRACT 

We propose a non-local de-noising approach aimed at 

filtering range data sensed by Photonic Mixer Device 

sensors. We address specifically the case of poor sensing 

environment when the reflected signal amplitude is low. In 

our approach, signal components of phase-delay and 

amplitude of the sensed signal are regarded as components 

of a complex-valued variable and processed together in a 

single step. This imposes better filter adaptivity and 

similarity weighting. The complex-domain filtering provides 

additional feedback in the form of improved noise-level 

confidence, which can be utilized in iterative de-noising 

schemes. Pre-filtering of individual components is proposed 

to suppress structural artifacts. Our approach compares 

favorably with state of the art approaches.   

Index Terms— PMD, Time-of-Flight, de-noising, Non-

Local Means, complex, noise confidence, range device 

1. INTRODUCTION 

A number or imaging applications, such as 3D scene capture 

and reconstruction, 3D video capture and virtual view 

synthesis require a precise knowledge about the scene depth. 

Therefore, sensors measuring distances, so-called range 

sensors as well as the corresponding sensing techniques have 

emerged recently. A class of range sensing devices uses the 

so-called Time-of-Flight (ToF) principle, where the distance 

is measured by computing elapsed time between emitted and 

reflected signals [1]. Photonic Mixer Device (PMD) is an 

evolving technology which utilizes a specific ToF technique 

of measuring phase-delay of reflected signal emitted by a 

continuously-modulated infrared light source [2, 3]. 

While being quite precise in measuring distances in indoor 

conditions, PMDs exhibit generic drawbacks related with 

their principles of operation. Some specific properties of the 

sensed scene, ambient light conditions or technological 

limitation of the used device can lead to erroneous range 

measurements, generally denoted as noise added to the range 

image. In this work, we present an approach aimed at 

suppressing the noise present in range images under certain 

imaging conditions. Specifically, we keep the  sensing 

principle and hardware unchanged and tackle the problem by 

an image denoising technique implemented as a post-

processing step.   

 
Fig. 1. Example of PMD capturing in low-sensing 

environment(top-to-bottom): a) relation between A and ED, b) 

default capturing mode, c) low-sensing environment  

2. PMD PRINCIPLE AND NOISE MODEL 

A typical PMD consists of a beamer, an electronic light 

modulator and a sensor chip (e.g. CMOS or CCD). The 

beamer is made of an array of light-emitting diodes (LED) 

operating in near-infrared wavelengths (e.g. 850 nm). It 

radiates a point-source light of a continuously-modulated 

harmonic signal which illuminates the scene. The reflected 

light from object surfaces is sensed back by pixels of the 

sensor chip, which collects pixel charges for some period 

denoted as integration time. For each pixel, the range data is 

estimated in relation to phase-delay between sensed signal 

and the one of the light modulator [1, 2, 4]. The phase-delay 

estimation is performed as a discrete cross-correlation 

process of several successively captured samples taken 

between equal intervals during same modulation periods of 

fixed frequency. Denote the sample data as Rn (n=1, 2,…N-

1, N≥4). The mixed signal components (amplitude and 

phase) are estimated from the sampled data as follows 
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where A is the modulation amplitude, and j is the imaginary 

unit. The sensed distance D is proportional to the phase 
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where f is the frequency of the emitted signal and cL is speed 

of light through dry air (~298.10
9
 km/h). The exact value of 

D is calculated after precise calibration of the sensor [5]. It 

has been proved that the measured signal amplitude is an 

optimal estimator for the reliability of range measurements 

[4, 6]. That is expressed by a relation between the variance 

of measured error of the sensed D, denoted by 2 
and the 

modulation amplitude 

2

2 1

A
  ,                                 (3) 

An empirical estimation of the distance error ED proving 

Eq.(3) is plotted in Fig. 1a. As seen in the figure, high 

measurement error is related with very low-amplitude 

signals which thus indicate a poor sensing environment. An 

amplitude threshold can delineate the operating range. 

Below the threshold, the distance measurement error goes 

above the specifications given in PMD operating manuals 

(cf. Fig. 1a). Erroneous sensing environment can be caused 

by both sensory-internal and external causes. Internal factors 

include low power of the emitted signal or short integration 

time for forming the reflected signal samples. External 

factors include reflection from surfaces of small incident 

angles, sensing objects having low-reflectivity materials or 

colors, objects situated close to the range sensing limit, 

signals formed by multiple reflections. The effect of such 

factors is an erroneous range image where errors are 

manifested as noise. Fig. 1b illustrates the case where the 

sensor works in normal mode. This mode is characterized by 

histogram of measured amplitudes ranging from 200 to 8000 

units thus well above the empirical threshold of 200 units. 

Fig. 1c illustrates the case where all amplitudes are below 

the threshold. While the amplitude map looks structurally 

intact, the distance map is grainy (noisy). Furthermore, there 

might be erroneous distance measurements even when the 

amplitude is relatively high. Such cases are caused by e.g. 

objects with very high reflectivity, which become additional 

light sources for other objects thus causing multiple 

reflections. Strong ambient light containing the same 

wavelength as of the emitted signal (e.g. sensing outdoor 

scenes under sun light) is also a source of measurement 

errors. Such errors are manifested in the distance map as 

structural artifacts rather than as a noise. We are particularly 

interested in the cases when the PMD sensor is forced, by 

technological limitation, to work in low power or short 

integration time mode (e.g. requirements for miniaturization 

leading to limited beamer size, decreased number of LED 

elements; embedding into portable low-power devices; cost 

of hardware). A remedy for such cases would be to 

introduce a denoising procedure applied to the computed 

distance map in a post-measurement stage.  

 

3. RELATION TO PRIOR WORK 

Image de-noising is an active area of research. Among the 

myriad of denoising methods, edge-preserving bilateral 

filtering [7] and non-local (patch based) methods [8, 9] have 

shown superior results. Correspondingly, those methods 

have been modified for the case of PMD data denoising as 

well. The work [10] has addressed a case of combing PMD 

data with aligned 2D color camera. The de-nosing benefits 

from the additional color texture mode. Both sets of data are 

projected on a mutual grid and a cross-modality Non-Local 

Means filter is applied that search for filter weights in color 

image to de-noise distance data. Several articles have 

proposed de-noising methods which use the modulation 

amplitude A as a given prior of noise presence and adapt 

parameters of the de-noising filters [6, 11, 12, 13]. 

Techniques utilize bilateral or multi-lateral filters [11, 12] or  

wavelet transforms with amplitude-adaptive thresholding 

[13]. De-noising of PMD data in complex-valued domain is 

first proposed in [6]. There, the de-noising filters are based 

on median smoothing and normalized convolution with 

Gaussian smoothing kernel.  

We propose an approach which contains two novel ideas. 

First, we employ non-local means filtering in complex-

valued signal domain, which to the best of our knowledge 

has not been studied yet. The patch similarity search for 

complex-valued image patches effectively adapts the prior 

knowledge of noise influence to the de-noising process and 

simplifies the block search stage leading to better weighting 

for complex-valued signals with reduced computational 

complexity. The non-local de-noising in complex domain 

implies simultaneous filtering of all signal components in a 

single step thus it additionally improves the noise confidence 

parameter given by A, which can be further used effectively 

for an iterative de-noising scheme. Second, we propose also 

a preliminary filtering step of individual signal components 

that provides additional enhancement effect by suppressing 

system artifacts to the also improved de-noising output.  

4. PROPOSED DE-NOISING APPROACH 

In our approach, we adopt the non-local de-noising 

paradigm. The general idea is to find and stack similar 

blocks (patches) of pixel data together and utilize their 

similarity measures as weights in a filtering process based on 

averaging. The reference for similarity is chosen as a block 

or patch of pixels that surrounds the filtered pixel. We based 

our approach on the original NLM [8], however other non-

local transform-domain filtering schemes are also possible 

[9]. The general NLM for a pixel with coordinate x is 

defined as follows [8]: 
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where CN –normalization factor, G – Gaussian kernel, Ω –  

search range, U – pixel map, x – index of filtered pixel, y – 
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index of center pixel in similarity patch, h – filter parameter 

tuned in relation with 2
,  (0) – centered convolution 

operator, (  ) – pixel indices of spatial neighborhood. The 

map for similarity search, denoted by U in our approach is 

chosen to be the pre-computed maps of (A, ) – (AU, U) 

given in Eq.(1) and combined together pixel-wisely into a 

complex-valued map, denoted by Z:  
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The modified NLM filter is given by:  
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Furthermore, we propose a preliminary filtering of 

individual components, i.e. A, φ by some mild smoothing 

filtering (e.g. Gaussian) before their coupling into a complex 

number thus leading to their filtered values AD, φD. The 

reason for this preliminary smoothing is to tackle possible 

structural artifacts. The effect is illustrated in Fig. 2, where 

the source exhibits areas of multi reflectivity, low 

reflectivity and small angle of incidence. For such cases, the 

preliminary smoothing improves search confidence of block 

patches, and tackles possible wrapping effects of the phase-

delay φ. The latter effect can be explained as follows: when 

the noise influences values of φ being close to wrapping 

boundaries, the phase wraps-over and provide measures of 

extreme errors among closely situated pixels which in fact 

are sensing similar distances. At the same time, the 

confidence given by A indicates small error. A wrapping 

noise effect could appear for sensed objects on far distances, 

or in local areas of multi-reflected sensed signals. A pre-

filtering is capable of mitigating this effect. Pre-filtering of 

both components gives usually best results, however, for 

low-complexity reasons it can be simplified to either 

filtering the amplitude or the phase. Filtering of either 

components leads to different enhancement effects 

summarized in the following options: 

Option 1. Filter A to get AD- De-noising and edge preservation in 

distance map is improved, but structural artifacts remain 

Option 2. Filter φ to get φD only. Edges are slightly preserved, but 

structural artifacts are better suppressed 

The effects of the above options are explained as follows: 

when amplitudes A(y) of a filtered patch are low, then 

similarity weights for patches of the same condition will 

have stronger impact and noise suppression will be weak. 

Some enhancement will be obtained only when the phase-

delay data for those patches is modified (pre-filter φ). 

Preliminary smoothing of φ might blur some edges. In the 

other hand, when the patch being filtered has high 

amplitudes (indicating small measurement errors), it is 

preferred that the range content is to be kept rather than 

smoothed. Thus, smoothing only the amplitudes is expected 

to improve the similarity block search. An adaptively-

switching pre-filtering can be devised combining benefits of 

both options. Pixels with very low values of A are treated by 

Option 2, all other cases are treated by Option 1(see the 

 
Fig. 2. Artifact Suppression by pre-filtering step: Patch 1) area of 

multi-reflectivity, Patch 2) area of low-reflectivity, Patch 3) area 

of surface reflection in small angles of incidence 

results in subsection 5.3).  

As the de-noising of complex signal modified both signal 

components, the modified amplitude can be further utilized 

for iterative de-noising procedure. The modified amplitude 

serves as an improved (de-noised) confidence as illustrated 

by Fig. 3. An optimal iterative solution will require adapting 

the filter parameter – h in every iteration due to the changed 

noise variance in the phase map. The proposed iterative de-

noising approach is summarized follows: 

0. Initialize. Iteration counter N=0 

0.1. Capture PMD data. Compute A, φ (Eq.(1)) 

1. IF pre-filtering? 

               1.1. YES – Pre-filter optionally A, φ  A[D] or φ[D] 

               1.2. NO – Skip step 

2. Calculate ZN from A[D] or φ[D] (Eq.(5)) 

3. Apply de-noising filter on ZN (e.g. Eq.(6)) 

 3.1. SAVE output – ZN 

 3.2. Calculate AN, φN  from ZN (Eq.(5)) 

        4. IF Iterate? 

 4.1. YES – N=N+1. Adapt filter parameter – h. 

4.1.0. REPEAT Steps 1÷4 

                4.2.  NO – Calculate D from φN. (Eq.(2)) 

        5. SAVE D. Finish 

5. EXPERIMENTS AND RESULTS 

5.1. Test Setup 

Our experimental setup includes a captured scene where the 

relative object position to camera are kept unchanged, but 

the sensing conditions are varied by changing sensor 

operational parameters. A PMD Vision CamCube 2.0 has 

been used in the experiments [14]. Default camera capturing 

settings and integration time of 2000 μs has been set to 

model normal sensing conditions (i.e. amplitude confidence 

ensuring measuring error smaller than specified for the 

device). We prepared Ground Truth (GT) images by 

averaging 200 consecutively captured frames. The testing 

scene is designed from planar objects facing frontally the 

camera, but placed in arbitrary positions. The objects are 

made from materials of different reflection or painted in 

different color textures. We model the varying sensing 

environment by decreasing the integration times for 
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capturing raw samples. The following times were 

experimented with 200 μs, 100 μs, 50 μs (cf. Fig.4, Fig. 5). 

Table 1 gives the percentage of pixels which amplitudes are 

below the threshold. 

5.2. Experiments 

We test our de-noising approach denoted by NLMCMPLX for 

varying pre-filtering schemes and number of iterations. We 

compare it with the classical NLM approach (denoted by 

NLM) applied to distance data only. The pre-filtering 

scenarios are tested for four cases of NLM smoothing filter: 

1) φD only 2) AD only 3) Both AD, φD, 4) Adaptive switching 

between AD, φD. We compare also with prior work. We have 

ported a Matlab code of Frank et al.  [4] (denoted by 

(FRANK)) and use their comments how to initialize 

properly filter parameters. We reproduced also the algorithm 

of Chan et al. in [12] (denoted by CHAN) in an 

implementation of bi-lateral filter [7].  We implement one 

more solution with the adaptive approach by CHAN, but 

utilizing Non-Local Means filter instead, denoted by 

NLMADAPT. The de-noising performance is measured by 

PSNR: 
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where NP – number of pixels, DC – evaluated range map, DGT 

– GT range map, DMAX – maximum expected distance value 

in PMD data (Eq.(2), for φ=2π). For fair comparison, we 

tune filter parameters of tested algorithms until best result is 

obtained for each method. 
       Table 1 

PMD Sensor Integration Times[μs]    200 100 50 

Low-sensed pixels[%] 57 93 100 

Noisy Input[dB] 26.58 22.41 18.10 

                                                  Methods   De-noised Results[dB] 

FRANK 30.69 28.34 26.09 

CHAN 32.24 30.56 28.50 

NLM(Buades) 33.11 30.95 26.98 

NLMADAPT 33.95 31.06 27.16 

                                  Proposed Solutions  

NLMCMPLX 35.02 31.39 27.55 

NLMCMPLX(1 iteration) 35.15 31.62 27.94 

NLMCMPLX (φD) 35.05 32.58 30.74 

NLMCMPLX (AD) 35.15 31.60 28.03 

NLMCMPLX (φD, AD) 35.29 32.48 30.76 

NLMCMPLX (Selective φD, AD) 35.11 32.60 30.74 
                                          Bold Numbers – Best Metric Results  

5.3. Results and Conclusions 

The obtained results are given in Table 1 and some are 

depicted in Fig. 4, Fig. 5. For the given experimental setup, 

the proposed solution NLMCMPLX for all tested scenarios 

show better performance of about 0÷2 dB in terms of PSNR, 

when compared to results from the other tested algorithms. 

The visual observation of the results suggests that obtained 

map bears also closer resemblance to GT map. Results of 

algorithms including pre-filtering show further performance 

boost and appear visually better (edges better preserved). 

The iterative approach brings additional improvement. It is  

worth to mention, that the selective pre-filtering approach   

 
Fig. 3. De-noising example of amplitude map: a) Ground Truth 

data, b) noisy input(AU), c) de-noised result(AD) 

 
Fig. 4. De-noising Results(200 μs) (left-to-right, top-to-bottom) 

a)Noisy Input, b)NLM, c)NLMCMPLX, d)NLMCMPLX(1iter.),  

e)NLMCMPLX(φD), f)NLMCMPLX(AD), g)NLMCMPLX(φD,AD), 

h)NLMCMPLX(Selective φD, AD), i)FRANK, j)CHAN, k)NLMADAPT, i)GT 

 
Fig. 5. De-noising Results(50 μs) (left-to-right, top-to-bottom) 

a)Noisy Input, b)NLM, c)NLMCMPLX, d)NLMCMPLX(1iter.),  

e)NLMCMPLX(φD), f)NLMCMPLX(AD), g)NLMCMPLX(φD,AD), 

h)NLMCMPLX(Selective φD, AD), i)FRANK, j)CHAN, k)NLMADAPT, i)GT 

NLMCMPLX(Selective AD, φD) shows best result in terms of 

PSNR in one case and very competitive in the other two 

while being visually the best (artifacts are better 

suppressed). Another important conclusion is that, while 

PSNR metrics shows similar or very close results among 

some solutions, the visual result of de-noised content could 

vary in great extent in terms of edge preservation (from 

sharp to quite blurry).  
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