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ABSTRACT

Modern, state-of-the-art disparity estimation techniques are
able to very accurately estimate the disparity for a wide va-
riety of scene types. However all of these methods assume
that the input images are epipolar rectified. When an image
pair is not rectified, it must be pre-processed before any es-
timation can be done. In this paper we propose a disparity
estimation scheme that is able to handle non-rectified images
without requiring a rectification step. We show how a minor
modification to an existing estimation framework can allow
for any disparity estimation framework to produce disparity
maps for non-rectified images.

Index Terms— Stereo Image Processing, Stereo Vision,
Spatial Filters, Optimization

1. INTRODUCTION

While there are a large number of different methods available
for estimating the inter-pixel disparity between a stereo im-
age pair, the fundamental assumption of all of these methods
is that the input pair is epipolar rectified [1]. This assump-
tion simply states that when given rectified images, the rela-
tionship between the same feature in both images is a two-
dimensional translation. This relationship is then further re-
stricted so that the translation is only along the horizontal or
‘x” axis of the image coordinate system. The purpose of this
requirement is so that searching for equivalent features only
has to be done along horizontal rows, or “scanlines”. Physi-
cally this corresponds to the two cameras being positioned at
the same height with parallel lines-of-sight.

In practice this requirement cannot usually be met for nat-
ural images as there will always been some degree of mis-
alignment with physical camera setups [2]. However, mod-
ern disparity estimation methods are robust enough such that
small misalignments have little effect on the final result. This
is a natural consequence of being robust against errors such
as mismatched colours, camera sensor noise, reflections, etc.
But, as the misalignment grows larger so does the likelihood
of error in the disparity estimate.
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One approach to deal with this is to pre-process the input
images such that it appears as if they were taken by aligned
cameras. This process, known as rectification, is straightfor-
ward if the cameras are “calibrated”, i.e. their intrinsic param-
eters are known. However, if these parameters are unknown
then an uncalibrated rectification must be used. This is a very
difficult problem to solve and can require the solution to a
non-linear system [3]. Furthermore, depending on the cam-
eras’ physical configuration and the nature of the scene, it is
quite possible for the rectification process to produce useless
transforms. E.g. if the estimate of the fundamental matrix
results in the epipole being inside of the image then a rectifi-
cation is not possible.

Another approach is to perform a two-dimensional search.
This removes the need for an initial rectification step and the
ambiguities that may results from it. In this case the dispar-
ity estimation procedure begins to resemble optical flow [4].
However, while they are related problems, disparity and op-
tical flow are not the same. Optical flow attempts to charac-
terize the apparent two dimensional motion of pixels between
images while disparity is the apparent offset along epipolar
lines. This small distinction means that disparity estimation
methods can be much more efficient then optical flow meth-
ods as they only need to perform a one dimensional search
and do not require solving large linear systems.

There are a number of instances where misaligned image
handling is very useful. For instance, in depth-based image
rendering [5] the disparity map is necessary in order to render
novel viewpoints. Obtaining rectified stereo pairs is possible
under controlled conditions but in cases such as automated
processing of user-generated content this is not the case. Opti-
cal flow can be used to handle misaligned images but its com-
putational burden makes it difficult to use. However, much
work has been done on real time disparity estimation and it
would be useful to extend existing approaches to handle mis-
aligned images to minimize the computational cost.

Very little prior work has been done in estimating the dis-
parity of misaligned images. Nalpantidis et al [6] used the
hierarchical block matching scheme from MPEG video cod-
ing to replace the normal one-dimensional search with a two-
dimensional search. The authors dropped this into a sim-
ple Winner-Take-All (WTA) framework to obtain the final
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disparity values. Thévenon et al [7] performed a full two-
dimensional search and utilized dynamic programming (DP)
to improve the quality of the final disparity map. This helps to
resolve some of the issues with WTA-based methods, namely
that they suffer in regions with little to no texture.

2. METHODOLOGY

Our estimation system is based on the semi-global match-
ing (SGM) method developed by Hirschmuller [8]. We use
a different cost-aggregation strategy to minimize the number
of paths that need to be integrated. However, the fundamen-
tal improvement that allows us to handle misaligned images
can be applied to any disparity estimation system, not just an
SGM-based one. A complete flowchart of our method is pre-
sented in Fig. 1.

2.1. Disparity Estimation

We first describe the operation of our system for the case of
aligned cameras. Given a reference image I,.; and target
image I;4, we first compute a cost volume C(z,y|d) such
that

C(Ccay|d) =MC (ITef(x7y)’It9t(x_d7 y))v (D

where MC(+) is the matching cost function. We then filter the
cost volume using guided image filters [9] in the exact same
manner as was developed by Hosni et al [10]. We also utilize
the same cost function and ask the reader to refer to that paper
for a full derivation. However, unlike Hosni et al we do not
obtain the disparity map d(x, y) by solving

d(z,y) = arg;nin{C’(w, yld)}, 2)

where C’(z,y|d) is the filtered cost volume. Rather we
find the optimal disparities by applying Hirschmuller’s SGM
method to C'(z, y|d).

The advantage to this approach is that it allows us to
simplify the SGM stage by decreasing the number of paths
through the cost volume. In the original method matching
was done on a per-pixel basis and the integration was done in
eight directions. With pre-filtering the number of paths can be
reduced to the four cardinal directions. This also allows us to
enforce inter-scanline consistency, something that is difficult
to do with DP-based methods.

Another advantage is that it makes the estimation method
itself more robust to noise. While guided image filters are
very powerful, in the end the method presented in [10] is a
simple WTA approach. It is still susceptible to errors in oc-
cluded and untextured regions.

2.2. 2D Search

The crux of our method is the two-dimensional search that we
use for misaligned stereo pairs. For a one-dimensional search,
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Fig. 1: Flowchart outlining the proposed disparity estimation
method.
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Fig. 2: A graphical example of the cost compression for a
particular pixel before compression (Fig. 2a) and after com-
pression (Fig. 2b).

the cost volume is three-dimensional. However this volume
becomes four-dimensional for a two-dimensional search be-
cause the matching cost now depends on both a horizontal
and vertical offset such that

MC (Iref(mvy)v-[tgt(x _d:my_dy)) . (3)

The new terms, d, and d,, now refer to the horizontal and
vertical displacements, respectively.

It is still desirable to process this higher dimensional cost
volume using an SGM scheme. An underlying assumption of
SGM is that the minimum cost path is traversed on a 2D slice
of the cost volume. By moving to the higher dimensional cost
volume, a “slice” is now a 3D volume, breaking this assump-
tion.

To allow us to use an SGM scheme we construct a com-
pressed 3D cost volume C(z, y|d,,) from the original 4D cost
volume. This is done by

C'(x,y|dm) = ar%min{C(%y\dm,dy)}. 4)

We also record the associated vertical disparity and construct
a compressed cost table that maps a horizontal offset to its
lowest cost vertical offset. The compressed cost volume is
then processed with the SGM optimization to produce the fi-
nal disparity map. Because each horizontal offset had an as-
sociated vertical offset, this information is also part of the dis-
parity map. This allows us to keep the vertical offsets coupled
to the horizontal offsets.

This process is visually shown in Fig. 2. For any given
pixel located at (z,y), there is an associated 2D cost volume
(Fig. 2a). After compression, the cost volume is now 1D
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(Fig. 2b). Each horizontal disparity has a best matching verti-
cal disparity d,,, where n is the index of the horizontal offset.
In effect, this creates a look-up-table for the horizontal dis-
parities.

2.3. Cross-checking and Error Correction

After the disparity estimation is complete there are still some
errors in the disparity map. These errors are often a result of
two things: mismatch errors and occlusion errors. While the
optimization process can reduce mismatch errors, it cannot
eliminate them and cannot remove occlusion errors at all.

To handle this we use the same strategy as in a number of
different estimation methods: obtain left-to-right and right-
to-left disparity estimates and compare the results. This is
known as “cross-checking” and we do this using the same
method outlined in [8] (it is in fact a very common method).
Once the errors have been identified, we use a simple two-
stage approach.

First we median filter the two disparity maps to eliminate
any mismatch errors. These tend to be very small and only
a few pixels or so in area. After this is done we replace any
pixel in an occluded area with the minimum disparity of the
two maps. The rational behind this is that this region often
contains background which will be of a lower disparity value.
The result is our final disparity map.

2.4. Relation to Prior Work

As we discussed in Section 1, very little work has been done
regarding disparity estimation of misaligned images. Typi-
cally most estimation has focused on aligned image pairs as
this is a simpler problem to handle. Of the work that has been
done, our work most closely resembles that of Thévenon et
al [7]. The major difference is that their method did not take
inter-scanline consistency into account and required a rela-
tively complicated DP optimization scheme.

Our extension to an existing method is much simpler and
can be used with any estimation method, not just one based on
SGM. In fact, in a WTA framework our method very closely
resembles that of Nalpantidis et al [6]. But unlike Nalpantidis
et al we formalize our method in terms of the matching cost
volume. This gives our approach a degree of flexibility not
found in prior work.

3. RESULTS

We demonstrate the efficacy of our method in this section.
This is accomplished by comparing the disparity maps that
are produced when the vertical disparity estimation is enabled
versus when it is disabled. The only parameter that we change
is the size of the matching window. For smaller images, too
large of a window can cause small details to disappear. Con-
versely, for larger images, too small of a window can result

in more noisy disparity maps. For the purposes of this paper
we do not employ sub-pixel disparity refinement. All of the
results presented contain integer-valued disparities.

3.1. Controlled Misalignment

Our first example is the well-known Tsukuba test image [11].
The disparity maps produced by our method on the unmod-
ified images are shown in Fig. 3. Because of the relatively
small size of the image (384x288) we used a matching win-
dow size of 9x9.

(a) Horizontal Disparity (b) Vertical Disparity

(¢) Occlusions

Fig. 3: The output of the proposed estimation method on the
“Tsukuba” test image.

Note that for even a perfectly rectified image pair, the ver-
tical disparity map (Fig. 3b) has non-zero values. These occur
along object edges where depth ambiguities naturally occur.
As can be seen in the occlusion map (Fig. 3c), the errors in
the vertical disparities occurs in roughly the same location as
occluded and disoccluded pixels. This is expected as these are
regions where reliable disparity estimates are not possible.

To show the effect of distortion, we rotate the right stereo
image by five degrees. The rotated image has also been
cropped so that it is the same dimensions as the left image.
Fig. 4 shows the new stereo pair.

(a) Left Image

(b) Right Image
Fig. 4: Distorted “Tsukuba” stereo image pair.

Fig. 5 shows a comparison between a disparity estima-
tion without the vertical processing and one with the vertical
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processing. Without any sort of processing the resulting map
(Fig. 5a) is of limited use and very noisy. When the process-
ing is enabled (Fig. 5b) the structures in the image pair are
clearly visible. There is some distortion, namely the apparent
gradient running from bottom to top. However this is much
more useful than the result in Fig. 5a. Fig. 6 shows the ver-
tical disparity map. Note the relatively smooth gradient from
left to right, as is expected by a simple rotation.

| ——

(a) Without Vertical (b) With Vertical

Fig. 5: A comparison between disparity estimation on a dis-
torted image pair with and without vertical processing.

Fig. 6: Vertical disparity map associated with Fig. 5b.

This particular example is somewhat contrived in that it is
highly unlikely that stereo cameras would exhibit this degree
of rotational misalignment. Even a five-degree offset is quite
large. However, this is an important result as it shows how
effective vertical processing can be.

3.2. Uncontrolled Misalignment

A practical application of our method is demonstrated by ob-
taining the disparity estimate from a frame in the “Summer in
Heidelberg”! short film. The chosen frame is shown in Fig.
7 while the resulting disparity estimates are shown in Fig. 8.
As this was from 720p footage, the matching window size
was set to 25x25.

The map without vertical processing (Fig. 8a) is notice-
ably more noisy on the right side of the image. This is due
to the “toed-in” camera configuration where the camera lines
of sight are not parallel. This causes growing vertical off-
sets as one moves farther away from the point of focus. The
map with vertical processing (Fig. 8b) is much cleaner and a
better representation of scene depth. As shown, without ver-
tical processing the trees on the right side of the frame cannot
be made out but are clearly visible with vertical processing.

'http://3dtv.at/Movies/Heidelberg_en.aspx

(b) Right

Fig. 7: Frame 1880 from “Summer in Heidelberg”.

(b) With Vertical

(a) Without Vertical

Fig. 8: A comparison between between the estimation meth-
ods for the Heidelberg frame.

The vertical disparities are shown in Fig. 9. We have also
tested the proposed approach extensively on professionally-
produced sports content that was captured with a toe-in cam-
era configuration, and found the proposed disparity estima-
tion approach to be very robust to the inherent misalignment.

Fig. 9: Vertical disparities associated with Fig. 8b.

4. CONCLUSION

In this paper we presented a disparity estimation method that
is able to obtain a disparity map for stereo images taken with
misaligned or non-rectified cameras. We did this by propos-
ing a simple modification to how the cost volume is created
during the matching stage. The modification was done in such
a way that makes it usable by a large class of disparity esti-
mation methods, something that was not addressed in prior
work.

There are a number of areas where our method could see
some improvement. Namely, the vertical disparities are es-
sentially found through WTA. This makes the vertical dis-
parities noticeably noisier than the horizontal disparities. As
such it would be useful to examine if a two-stage optimization
would be possible: first optimize the vertical disparities and
then optimize the horizontal ones.
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