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ABSTRACT

There are a number of component technologies that are useful for
visual search, including format of visual descriptors, descriptor ex-
traction process, as well as indexing, and matching algorithms. As
a minimum, the format of descriptors as well as parts of their ex-
traction process should be defined to ensure interoperability. In this
paper, we study the problem of interoperability among compressed
local descriptors at different bit-rates; that is, allowing effective and
efficient comparison of compact descriptors, which is fundamentally
important to mobile visual search applications. We propose to com-
bine feature transform and multi-stage vector quantization to imple-
ment the interoperability of compact local descriptors. First, an or-
thogonal transform (e.g. Principle component analysis, PCA) is em-
ployed to eliminate the correlation between local feature dimensions,
which improves the performance of compressed domain descriptor
matching with the well-aligned distance computing of sorted impor-
tant features in transform space. Second, a multi-stage vector quan-
tization (MSVQ) is applied to generate compact codes for local de-
scriptors. At light quantization tables, MSVQ takes advantage of the
transform domain features to properly allocate different budgets to
each group of transformed feature dimensions, respectively. The in-
teroperability between compressed descriptors at different bit rates
can be achieved by the descriptors’ fast matching in the orthogonal
feature space. In other words, descriptor decoding into the original
feature space (SIFT space) is unnecessary, as the distance can be cal-
culated by pre-computed lookup tables. In particular, such efficient
matching in transform domain is significant for large-scale visual
search. Over a set of benchmark datasets, we have reported superior
performance over state-of-the-arts.

1. INTRODUCTION

With the ever growing computational power on mobile devices, re-
cent works have proposed to directly extract compact yet discrimi-
native visual descriptors [2][3][4][9] for low bit rate visual search.
Sending compact descriptors may greatly reduce the latency from
delivering visual queries in unstable wireless environments. Previ-
ous works have focused on either compact global descriptors like
[21[9] or compact local descriptors , e.g., CHoG [3] [4]. On the
other hand, compact descriptors can significantly reduce the storage
of local features at the server end (for geometric consistency check
in re-ranking) when dealing with large-scale visual search.
Problem. In wireless environments, descriptor compression at
the client end should adapt to the constraints of bandwidth. The
descriptors would be generated at different operating points (up-
per bounds of average descriptor lengths). In addition, descriptor
compression may accelerate the matching and retrieval operations
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Fig. 1. The proposed scalable local descriptor compression to meet
the requirement of interoperability for mobile visual search.

from directly operating compressed descriptors, either from a mo-
bile end to a server end, or between mobile ends. Descriptors gen-
erated at any one of these operating point should allow retrieval and
matching operations with descriptors generated at different operat-
ing points. Hence, the issue of interoperability arises, aiming to ad-
dress the challenges of compact visual descriptors, including com-
pactness, scalable length, low complexity, as well as fast compari-
son or other operations between descriptors at different budgets. In
particular, this has also motivated the recent endeavors of the Com-
pact Descriptor for Visual Search (CDVS) MPEG standardization
[LATLLSIOL6I0T7T18].

Inspiration. Few existing works in mobile visual search at-
tempt the interoperability issue, which has, however, turned out to be
one of key focuses in the ongoing MPEG CDVS standard. Several
MPEG proposals have targeted at handling the interoperability from
the perspectives of both vector quantization and scalar quantization.
For instance, the recent work in [17] introduced an ad-hoc approach
to select discriminative feature dimensions in the transformed do-
main, upon which scalar quantization followed by entropy coding is
leveraged for local descriptors compression. Another recent work
in [18] performed vector quantization over the raw local descriptors
with tree-structured vector quantization. In essential, these works
relate to the similarity comparison on features extracted from com-
pressed domain in image retrieval [5]. Towards the interoperability,
prospective research efforts aim to maximize the potentials of feature
space distance metrics directly from the compressed domain.

Our Approach. In this work, we propose a novel approach to
the interoperability between compressed local descriptors. The basic
idea is to eliminate the dimension correlation of raw local descriptors
using an orthogonal feature transform, e.g. PCA, upon which multi-
stage vector quantization (MSVQ) is carried out in the orthogonal
feature space. In online search, local descriptors are compressed
at various budgets according to available bandwidth, which are di-
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rectly compared to the compressed local descriptors at the server
end, without extra decoding. Through eliminating the correlation
between local feature dimensions, the subsequent compact descrip-
tors may improve the performance of transform domain descriptor
matching with the well-aligned distance computing of sorted impor-
tant features in transform space. MSVQ is a memory light approach
to compressing dimension reduced features; moreover, the transform
domain features can be employed to properly allocate different bud-
gets to each group of transformed dimensions. Accordingly, the in-
teroperability of compressed descriptors at different budgets, can be
accomplished by accumulating the distances of product quantized
sub-vectors (groups of transformed dimensions) in the orthogonal
feature space. Descriptors decoding into the original feature space
(say, SIFT space) is unnecessary, as the distance computing can be
performed over pre-computed lookup tables.

Related work. Below we brief previous works in compact de-
scriptors. However, the interoperability issue has not been well stud-
ied, which differentiates our job from most existing works. The com-
pact descriptors have been widely studied in previous literatures, for
instance, reducing the dimension of local descriptors like PCA-SIFT
[10], GLOH [I1], SURF [!] and MSR descriptors [0], as well as
compressing the image-level signatures like miniBoF [7] and Ag-
gregated Local Features [8]. Recent works in mobile visual search
[2,3,9] stepped forward to directly extract very compact descriptors
at the mobile end to achieve a low bit rate query delivery. For in-
stance, Chandrasekhar et al. [3] proposed a Compressed Histogram
of Gradients (CHoG) descriptor, which adopts Huffman coding trees
to compress a local descriptor into approximately 60 bits. An al-
ternative is to compress the bag-of-features histogram [2,9]. For in-
stance, Chen et al. [2] proposed to encode position difterences of
non-zero bins in bag-of-features, which reported an average length
of ~ 3K B per image over a vocabulary of 1 million words.

2. ON THE INTEROPERABILITY

Problem formulation. To deal with the bandwidth variation in mo-
bile visual search, a compact descriptor is typically with variant
rates. Intuitively, the scalability can be solved by sorting the local de-
scriptors in a given image based on their “importance”, upon which
important descriptors are ranked more frontier and vice versa. How-
ever, this scheme may discard important local descriptors. Rather
than transmitting local descriptors progressively, we prefer to com-
press local descriptors and the rate may be adapted to the available
bandwidth. However, we need to address a key challenge of interop-
erability between compressed local descriptors at different rates.

Formally speaking, given two d-dimensional local descriptors
x; and x,, with different rate constraints R, and R,, respectively, we
study the descriptors’ interoperability as follows:

N Inter(V(Rx] ) DX] )7 V(Rxg ) sz )) (1)

where S j..,(.,.) denotes the interoperation function of compressed
local descriptors. V is the encoded representation subject to distor-
tion D. To accomplish a better interoperability, the distortions of
descriptors x; (or x;), Dy, (or Dy,), should be minimized subject to
the constraints that bitrate R,, (or R,,) cannot exceed the thresholds
Rbudge/] (OI' RbudgerZ)-

Towards effective descriptors matching in the compressed do-
main, we introduce a distortion function D(T, Q) and formulate a
constrained optimization problem:

rgit? D(T,Q(G,B)) subject to R(T,Q(G,B)) < Ryuager (2)
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Fig. 2. The PSNR of PCA transformed descriptors versus the PCA
transformed dimensions over the MIRFLICKR25000 dataset.

where T denotes a transform of individual local descriptors, Q is a
quantizer. G denotes the grouping of transformed dimensions, and
B the bit rate allocation in quantizing the sub-vector of each dimen-
sion group. R(T, Q(G, B)) is the size of a compressed descriptor.
Effective local descriptor compression has to reduce the information
redundancy in the original feature space. The redundancy typically
refers to the uninformative feature dimensions, which are useless for
image matching. Actually, the coding of uninformative dimensions
would degenerate pairwise matching accuracy or search precision,
which is a waste of expensive budget as well. After feature redun-
dancy is removed, quantization (and optional entropy coding) are
carried out to produce a compact local descriptor.

3. SCALABLE DESCRIPTOR CODING

We propose the scalable local descriptor compression scheme based
on orthogonal feature transform and vector quantization. We aim to
reduce the feature dimension correlation of original descriptor space
and adapt the quantization in transformed dimensions.

3.1. Orthogonal Feature Transform

While there is a wide variety of transforms available, we adopt Prin-
cipal Component Analysis (PCA) as an exemplar implementation '.
PCA is a mathematical procedure that uses an orthogonal transfor-
mation to convert a set of observations of possibly correlated vari-
ables into a set of values of linearly uncorrelated variables called
principal components. The first principal component has the largest
variance, and each succeeding component has the largest variance
possible under the orthogonal constraint. The eigenvectors associ-
ated with the energetic eigenvalues of the empirical vector covari-
ance matrix are used to define a matrix 7 € R®, transforming a
vector x € R4 as ¥’ = Tx.

Due to the rate constraint Rj,qg.r, it is expensive to encode all the
elements of x’. The intuition is that the important elements ranked
higher should be adopted to code when budget is less sufficient. As-
sume that we select the first d'(d” < d) dimensions, the remaining
elements would cause an information loss &7 =|| x’ — x'(d’) ||§. To
meet the requirement of compact descriptors, the vector x’(d") is sub-
sequently encoded with vector quantization.

3.2. Multi-Stage Vector Quantization

We adopt a multi-stage vector quantization to compress each group
of transformed dimensions. Comparing to scalar quantization, vec-
tor quantization merits in high compression rate as well as the ability
to recover the original signal. So we employ vector quantization.
Given a transformed feature x’, a partition is given to di-
vide the d-dimensional transformed dimensions into S groups

'In principle, any orthogonal transform can be applied in our case, which
is indeed not the key focus of our scheme.
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G = {gi,...,gs} consecutively. For instance, the partition setting
of 32, 8, 8, 16, 32 and 32 dimensions for a transformed SIFT
descriptor (d = 128), are setup to group the most important yet
orthogonal dimensions. Subsequently, a set of multi-stage vector
quantizers Q = {Q,...,Qs} with bit allocations B = {by,...,bs}
is applied within each partition. This is done by training a set of
codebooks {Cy, ..., Cs } over the transformed dimension groups. Tak-
ing the setting of 32, 8, 8, 16, 32 and 32 dimension partition, C;
corresponds to the quantizer using the first 32 dimensions, C, the
quantizer using the subsequent 8 dimensions, and so on. Regarding
to each @, its codebook C, is designed in two phrases, namely,
“Tree Structure Quantizer” and “Residual Quantizer”.

Tree Structure Quantizer. The training of the first-stage quan-
tizer may resort to the state-of-the-art visual vocabulary techniques,
such as [13][12] and their variances. In this work, we adopt Hierar-
chical K-Means clustering to build the initial codebook with dimen-
sion M. Given the s-th group of transformed dimensions x’'(g;),
we quantize the group of transformed dimensions into the nearest
centroid w; (j € [1, M4]).

Residual Quantizer. In the second stage, we adopt a prod-
uct quantizer to further quantize the residuals resulting from the
codebook at the first stage. More specifically, given the trans-
formed descriptor x’(g,) and its corresponding quantization vector
in the first stage w;, a residual vector r(x'(g,), w;) is then formed as
r(x'(gs),w;) = x'(g5) — w;. The product quantizer works as below:

G1(r1(X (8 W), -y (it (X' (85), W) 3

where ¢g; (i € [1, My,,]) is the i-th quantizer with codebook size W;
to encode the i-th subvector of residuals r;. At last, the bit allocation
for the quantizer Q; is denotes as b, = log(M,; + ZZZI"“ w)).
Suppose that x’(d’) consists of S'(S’ < §) dimension groups,
the resulting quantization error can be obtained by gy = Zf:/] [

X(g) = Q¥ (g ) I + Xiss 1 X' (g)) 13-

3.3. The Optimization of G and B

Given a budget constraint Ry,e., we need to consider the problem
of joint optimizing the transformed dimension selection (grouping)
and vector quantization. The expected error (distortion) D(T, Q) of a
compressed descriptor is the sum of &7 and &¢. The goal is to figure
out the optimal transformed dimension grouping G and bit alloca-
tion B for each quantizer to minimize D(T, Q). This optimization
problem is intractable, as the objective resorts to the learning of G
and B iteratively. In practice, we come up with a suboptimal solu-
tion. Given a budget, the mean square error D, (T, Q) is empirically
measured on a training descriptor set X as:

1
DAT.O) = s ;sr + &0, (4)

where card(X) denotes the number of descriptors in X. It derives
an objective to optimize the combination setting of G and B. The
effectiveness has been empirically proved in our experiments (See
Section 4). A good configuration of G and B is listed in Table 1.
Meanwhile, referring to Figure 2, the group lengths of dimension
grouping G may be justified by the empirical observation of PCA
dimensions vs. PCA tranformed descriptors’ PSNR as well.

3.4. Interoperation Function

Matching of compressed local descriptors at various bit rates is per-
formed directly in compressed domain. Based on the interoperation
function, give the first and second descriptors x; and x, with a bit rate
constraint of d| and d bits respectively, the matching is performed

Table 1. Quantization Configuration

81 82 83 84 85 86
Group Length | 32 8 8 16 32 32
Bit Allocation | 13 12 12 12 12 12

Table 2. Memory cost of different compression schemes

Transform | Quantization ]E:;:)t;(l)rll)gy MZ‘:;‘)]W
L?gfcs LBC+DS 2§6QB AC 2568
TPSVQ - ;FOSI;\\//[% - 10.5MB

in the compressed domain by calculating the score in Equation 1. In
this work, we use L2 distance

S tmer = IM(Q(x1(d1))), M(Q(xy(d3))ll2 (6))

where M denotes the table look-up procedure to compute the dis-
tance based on the entry of vector quantizers. If d] # d), the inter-
operability is achieved by computing the distance of the overlapped
dimension groups S{ NS of x| and x}.

4. QUANTITATIVE VALIDATION

Datasets and Evaluation Protocols. We evaluate the interoper-
ability of our proposed local descriptors compression scheme, in
terms of matching/retrieval accuracy, over a group of public avail-
able benchmark datasets, referred to as the MPEG CDVS benchmark
(R | R) RS RA | REI E

(1) Graphics dataset [19] depicts 5 product categories includ-
ing CDs, DVDs, books, text documents and business cards. There
are 1,500 queries and 1,000 reference images. Query images are
captured by a mobile phone under varying lighting conditions with
background clutter. All images are compressed in JPEG format.
3,000 matching pairs and 30,000 non-matching pairs are involved.

(2) Painting dataset [19] contains 400 queries and 100 reference
images for paintings (like history, portraits, landscapes and modern-
art), including 364 matching pairs and 3,640 non-matching pairs.

(3) Frame dataset [19] contains 500 video frames, with a range
of contents like movies, news reports and sports. There are 400
queries taken by a mobile phone, capturing the screen of laptop, PC
and TV, which involves typical specular distortions. 400 matching
pairs and 4,000 non-matching pairs are included.

(4) Landmark dataset contains 2,302 queries and 6,367 reference
images from 3 benchmarks: 1). the Zurich buildings [20], with 1,115
images of 200 buildings in Zurich city, 115 as queries; 2). the Turin
buildings [21] with 1,980 images of 180 landmarks in Turin city,
1,620 as queries; and 3). the PKUbench [22] with 5,574 images of
198 landmarks from PKU campus, 567 as queries. In total, 3,805
matching pairs and 48,675 non-matching pairs are involved.

(5) UKbench dataset [23] contains 2,550 objects, each with 4
images taken from different viewpoints. All the 10,200 images are
indexed as reference images and used as queries. 2,550 matching
pairs and 25,500 non-matching pairs are formed.

In retrieval experiments, we use a FLICKR1M dataset contain-
ing 1 million images as distractors, which is merged with reference
datasets to evaluate the scalability in dealing with large-scale im-
age collections. The MIRFLICKR25000 [24] is used as the external
dataset to train vector quantization tables (codebooks).

As to the evaluation protocols, we use the mean Average Pre-
cision (mAP) to evaluate the retrieval performance. For pairwise
matching, we produce the True Positive Rate (TPR) at the False Pos-
itive Rate (FPR) of less than 1%.
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#“ 70 102 134 202 37 61 81 17 169 13 37 49 61
bits  bits  bits  bits  bits bits  bits  bits  bits  bits

0.805 | 0.749| 0.755 | 0.742 | 0.728

0.75 1 0.847 | 0.84 | 0.83 | 0.828

0.749 | 0.841 0.853

0.737 | 0.829 | 0

0.7330.825 | 0.847
(a) (b)) (e)

Fig. 3. The pairwise matching performance over the UKbench
dataset for the compressed descriptors at different rates in different
methods: a). Baseline(1), b). Baseline(2), c). Baseline(5)
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Fig. 4. TPR (at less than 1% FPR) of different methods over UK-
Bench dataset in pair-wise matching experiments.

Empirical settings. We use SIFT descriptors as the original
(uncompressed) local descriptors. To avoid the influence of local
descriptor number on performance, we fix the setting of 300 local
descriptors per image. We first apply the PCA transform to project
each SIFT feature into a 128-dimensional orthogonal space. Then
we segment the transformed features into six consecutively groups
with dimensions 32, 8, 8, 16, 32, and 32 respectively, each of which
is quantized separately. Table 1 lists the details of bits allocation.

Baselines. We compare five baselines: (1) Linear Bin Combi-
nation + Dimension Selection + Scalar Quantization + Arithmetic
Coding (LBC_DS _S Q_AC, referred to as the H-Mode in MPEG
[17]); (2) Tree Structured Product Vector Quantization (TSPVQ)
without any orthogonal transform (referred to as the S-Mode in
MPEG [18]); (3) PCA with different dimensions of 8,16,32,64,128
without quantization; (4) Original SIFT descriptor (without com-
pression); (5) PCA + Grouping transformed dimensions + Vector
Quantization, which is our proposed approach.

Quantitative Comparisons. Figure 4 compares the TPR rate
distortions of baselines at different descriptor lengths. We can see
that our approach has achieved promising results at much lower bit
rates. In practice, given a budget, our approach can accommodate
more compressed local descriptors to form a compact descriptor,
which could significantly contribute to the pairwise matching. Fig-
ure 3 illustrates the performance of inter-operating points matching
in the cases of Baseline (1), Baseline (2) and Baseline (5) (ours).
Clearly, baseline (2) is with poor interoperability. In Baseline (2),
the feature transform is not applied; at different descriptor lengths,
separate codebooks are trained to quantize raw descriptors, so that
the performance would drop due to the similarity measure across dif-
ferent codebooks. Distinct from Baseline (2), Baselines (1) and (5)
employ feature transform, so that more informative feature dimen-
sions are selected for better quantization, so that the loss of similarity
measure accuracy from asymmetric quantization based on separate
codebooks (no orthogonal transform) in Baseline (2) can be reduced.
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Fig. 5. TPR (at less than 1% FPR) over different datasets in pair-wise

image matching experiment.
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Fig. 6. Retrieval mAP versus bit rates over UKBench dataset.

Comparing to the ad-hoc transform (Baseline 1), our approach
employs an orthogonal transform, yielding better interoperability,
even at very low bit rates. The matching performance of Baseline
(5) outperforms Baseline (1), especially at very low bit rates, which
originates from the advantages of vector quantization over scalar
quantization. With transform, Figure 5 shows we have achieved
consistent promising results including very low bit rates over differ-
ent datasets. Moreover, our approach (Baseline 5) has achieved the
best retrieval performance over the challenging UKBench dataset to-
gether with 1 million distractor at lower rates as shown in Figure 6.
Due to limited space, the results of all datasets are not listed.

Complexity Analysis. As listd in Table 2, our approach em-
ploys MSVQ, which has significantly reduced the size of quanti-
zation tables, comparing with the traditional product quantization
(Basedline 2). A small memory footprint is important for mobile de-
vices. Compared with Baseline (1), our approach has obtained good
performance gains but at the cost of a larger quantization table.

5. CONCLUSIONS

We have attempted to address the novel issue of interoperability in
visual search. The interoperability among compressed local descrip-
tors enables effective and efficient comparison of compact descrip-
tors. In particular, the fast descriptor matching directly in transform
domain is promising in dealing with large-scale visual search. Fu-
ture work may involve how to improve the retrieval performance in
the context of social network[25].

6. ACKNOWLEDGEMENT
This work was supported in part by the National Basic Research
Program of China (2009CB320902), the Chinese Natural Science
Foundation under Contract No. 61271311 and No. 61121002, and
in part by the Research Fund of ZTE Corporation.

1521



7. REFERENCES

[1] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up
robust features. ECCV. 2006. 2

[2] D. Chen, S. Tsai, and V. Chandrasekhar, ef al. Tree histogram
coding for mobile image matching. DCC, 2009. 1, 2

[3] V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, R. Grzeszczuk,
and B. Girod. CHoG: Compressed histogram of gradients a low
bit-rate feature descriptor. CVPR, 2009. 1, 2

[4] V. Chandrasekhar, G. Takacs, D. Chen, et al. Transform coding
of image feature descriptors. VCIP, 2009. 1

[5] Shih-Fu Chang. Compressed-Domain Content-Based Image and
Video Retrieval. Multimedia Communications and Video Coding,
Oct. 1995. 1

[6] G.Hua, M. Brown, and S. Winder. Discriminant embedding for
local image descriptors. /CCV, 2007. 2

[7] H. Jgou, M. Douze and C. Schmid. Packing bag-of-features
ICCV, 2009. 2

[8] H. Jegou, M. Douze, C. Schmid, P. Perez. Aggregating local
descriptors into a compact image representation. CVPR, 2010. 2

[9] R.Ji, L.-Y. Duan, J. Chen, H. Yao, J. Yuan, Y. Rui, and W. Gao.
Location discriminative vocabulary coding for mobile landmark
search. IJCV,2011. 1,2

[10] Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive rep.
for local image descriptors. CVPR, 2004. 2

[11] K. Mikolajczyk and C. Schmid. Performance evaluation of
local descriptors. PAMI, 2005. 2

[12] D. Nister and H. Stewenius. Scalable recognition with a vo-
cabulary tree. CVPR, 2006. 3

[13] J. Sivic and A. Zisserman. Video Google: A text retrieval ap-
proach to object matching in videos. ICCV, 2003. 3

[14] ISO/IEC JTC1/SC29/WG11/N12201 Call for Proposals for
Compact Descriptors for Visual Search. 2011. 1, 3

[15] ISO/IEC JTC1/SC29/WG11/N12202 Evaluation Framework
for Compact Descriptors for Visual Search. 2011. 1, 3

[16] ISO/IEC JTC1/SC29/WG11/N12735 Description of Core Ex-
periments on Compact descriptors for Visual Search. 2012. 1,
3

[17] ISO/IEC JTC1/SC29/WG11/M25929 CDVS CE2: Local De-
scriptor Compression Proposal. 2012. 1, 3, 4

[18] ISO/IEC JTC1/SC29/WG11/N12929 Test Model 3: Compact
Descriptors for Visual Search. 2012. 1, 3, 4

[19] http://mars0@1.stanford.edu/mvs 3
[20] http://www.vision.ee.ethz.ch/datasets 3

[21] http://pacific.tilab.com/download/CTurinl80.zip
3

[22] http://61.148.212.146:8080/1landmark/benchmark 3
[23] http://vis.uky.edu/~stewe/ukbench 3
[24] http://press.liacs.nl/mirflickr 3

[25] S. Liu, P. Cui, H. Luan, W. Zhu, S. Yang and Q. Tian. So-
cial Visual Image Ranking for Web Image Search. Advances in
Multimedia Modeling, 2013. 4

1522



