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ABSTRACT
Due to the exponential growth of satellite image collections, there is
an increasing need for automatic solutions that assist operators in dif-
ferent applications. Automatic change detection is one of these ap-
plications that received an increasing attention during the last years.
Nevertheless, fully automatic solutions reach their limitation; on the
one hand, it is difficult to build general decision criteria able to se-
lect area of changes for different images, and on the other hand, the
relevance of changes may differ from one user to another.
In this paper, we introduce an alternative change detection method
based on relevance feedback. The proposed algorithm is iterative
and based on a query and answer (Q&A) model that (i) asks the user
the most informative questions about the relevance of his targeted
changes, and (ii) according to these answers updates change detec-
tion results. Experiments conducted on large satellite images, show
that indeed the approach is effective and allows the user to retrieve
almost all his targeted changes while discarding the untargeted ones,
with a negligible interaction effort.

Index Terms— Relevance Feedback, Change Detection, Satel-
lite Images, Kernel Machines, Image Retrieval.

1. INTRODUCTION

Change detection is the process of finding occurrences of targeted
changes into a scene at a given instant t1 w.r.t the same scene, ac-
quired at instant t0 < t1. In remote sensing, acquisitions may be
of different natures (such as satellite images) and applications are
numerous ranging from studying environmental variations (melt-
ing glacier, deforestation, etc.), to assessing damaged areas after
catastrophe (flooding, earth-quakes, fires, etc.) [1, 2], to video
surveillance and cartography. Early change detection algorithms
were introduced during the 70’s and were initially based on simple
comparisons of multi-temporal signals, via image differences and
thresholding, using vegetation indices, principal component analysis
and change vector analysis (see for instance [3, 4, 5, 6]).

Depending on use-cases, one may identify relevant changes
(appearance or disappearance of entities or objects into scenes) and
many irrelevant changes (due to sensor motion, viewpoints, registra-
tion errors, radiometric changes, atmospheric variations, occlusions,
shadows, parallaxes, insignificant local motions of objects like wav-
ing trees, etc.). Existing methods (see for instance [7, 8, 9, 10])
rely on a preliminary preprocessing step that removes irrelevant
changes, by finding parameters of sensors for registration as well
as correcting radiometric effects, occlusions and shadows. Other
methods [11, 12, 13, 14, 15, 16] either ignore irrelevant changes or
consider them as a part of appearance model design and are able to
detect relevant changes while being resilient to irrelevant ones.

In spite of their relative success, the aforementioned techniques
are highly limited by the huge variability due to the presence of

irrelevant changes and are often subject to many false alarms and
missing detections. These errors either result from the limitation of
preprocessing techniques or from the difficulty to learn a general
decision criterion1 as the frontier between relevant and irrelevant
changes is sometimes narrow and may differ from one user to an-
other. Thus, it is preferable to first let users designate few positive
and negative examples of relevant and irrelevant changes, according
to their intentions, and then automatically update change decision
criteria. This process, when repeated iteratively, is known as rel-
evance feedback (RF). The latter makes it possible - not only - to
enhance quality of detection criteria, by adapting them to input
images but also provides a natural way of interaction, with users,
without systematic and tedious parsing of large satellite images.
That’s why relevance feedback should be preferred.

In this paper, we propose a change detection algorithm, for satel-
lite images, based on relevance feedback. The method is interac-
tive and based on Q&A model that helps the user expressing his
intention and finding his targeted changes in few iterations. Rele-
vance feedback has been previously studied mainly for image re-
trieval [17, 18, 19, 20, 21, 22, 23] and foreground/background seg-
mentation [24, 25, 26], but our work is the first comprehensive study
of relevance feedback for satellite image change detection, and in-
cludes at least three contributions

• The application of RF to change detection rises many new
issues compared to the known RF for single category image
retrieval (for instance [27, 28, 29, 30]). On the one hand,
learning how to detect changes in “images including many
categories of objects” is clearly more challenging than learn-
ing how to find “a single category in image retrieval”. On
the other hand, images in change detection are also subject to
many irrelevant changes that make the problem even harder.

• The building blocks of our relevance feedback method in-
clude learning and display models. The learning model is
built with user’s answers to the most informative questions
which are suggested by the display model.

• Finally, comparisons with related baseline methods, show the
substantial gain of our interactive RF method, that allows the
user to find his targeted changes, in few iterations.

The remainder of this paper is organized as follows. Section 2 dis-
cusses the steps of our relevance feedback algorithm, and Section 3,
presents the design of these steps and mainly strategies for the Q&A
model. Section 4, shows the evaluation of our interactive change
detection method on satellite images and comparison w.r.t different
baselines. Finally, Section 5 concludes and provides possible exten-
sions for a future work.

1This results from the difficulty to get representative training sets, includ-
ing sufficient amount of relevant and irrelevant changes.
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2. RELEVANCE FEEDBACK-BASED CHANGE
DETECTION

Let Ir = {p1, . . . ,pn}, It = {q1, . . . ,qn} be two satellite images
captured at two different instants t0 and t1 with t0 < t1. Ir , It, re-
ferred to as reference and test images respectively, are defined as the
union of patches {p1, . . . ,pn}, {q1, . . . ,qm}, with pi,qi ∈ Rd
(here d = 30 × 30 × 3 in practice, see experiments). Without
loss of generality, we assume these two sets registered, i.e., pixels
in pairs {(pi,qi)}i correspond to the same locations. Now, we de-
fine I = {x1, . . . ,xn}, with xi = (pi,qi), and Y = {y1, . . . ,yn}
the underlying unknown labels. Our goal is to design a change de-
tection algorithm based on relevance feedback2 in order to predict
the unknown labels {yi}i with yi = +1 if the test patch qi ∈ It
corresponds to a “change” w.r.t its reference patch pi ∈ Ir; and
yi = −1 otherwise. As “changes” are scarce, it is very reasonable
to assume that |{xi : yi = +1}| � |{xi : yi = −1}|.

2.1. Overview of our change detection algorithm

Let Dt ⊂ I be a subset of patch pairs (also referred to as display)
shown to an oracle (user) at iteration t and let Yt be the unknown
labels of Dt; in practice |Dt| is fixed to 16 � |I|. We build our
RF algorithm by asking the user “questions” about the relevance of
changes in Dt according to the following steps

Display zero. Select a display D0 including the most representative
samples in I. This is achieved using an effective and also efficient
algorithm, called “max-min”, described in Section 2.2.

Run following steps for t = 0, . . . , T − 1 (In practice, T = 10)

-User model. Label display Dt with an oracle function (denoted
C(.)) and assign C(Dt) to Yt. In this work, C, also referred to as the
user model is assumed deterministic and known-only-by-the-user
so the user’s answers are assumed coherent and objective otherwise
C(.) should be stochastic [31]. In this work, and since our change
detection ground-truth is objective, we assume deterministic user
models only.

-Learning model. Train a decision function ft(.) on data labeled,
so far, ∪tk=0(Dk,Yk) and use it to predict the unknown labels in
I − ∪tk=0Dk depending on sign[ft(.)]. As will be shown in Sec-
tion 3.1, we use balanced support vector machines (SVMs) to build
ft(.) at each iteration t.

-Display model. Select the next display Dt+1 ⊂ I − ∪tk=0Dk to
show to the user. We choose this display using two strategies, closely
related to active learning (see for instance [32, 33]): (i) exploration
and (ii) exploitation. The former aims to select data in order to dis-
cover new modes of ft+1(.) while the latter seeks to locally refine
the decision boundary of ft+1(.). Details about these two strategies
and their combination, are shown in Section 3.2, and constitute the
main contribution of this work.

2.2. Display Zero

Initial display selection, also referred to as the “display zero” prob-
lem, consists in finding an initial set of patch pairs which are suffi-
ciently different and representative of I. This allows us to cover a

2In this process, the user has to label an infinitesimal fraction of data in
order to build the change detection algorithm.

Algorithm 1: Display Zero
Input: The union of all patch pairs in I.
Output: Display D0 ⊂ I of size m = 16� n.

D0 ← ∅
for i := 1 to n do

dxi ←∞
x← xr ; // r is randomly picked in
{1, . . . , n}
for j := 1 to m do
D0 ← D0 ∪ {x}
for i := 1 to n do

dxi ← min{dxi , ‖xi − x‖2}
x← argmaxxi dxi

few possible relevant changes (resulting from different types of ap-
pearances or disappearances of objects) and irrelevant ones (due to
illumination, occlusion, etc.); see Fig. 1.
We propose to select this display as

D0 ← argmax
D⊂I

∑
x∈D

min
x′∈D−{x}

∥∥x − x′
∥∥
2
, (1)

here ‖.‖2 denotes the L2 norm. As this problem is combinatorial
(with a huge search space including C|D0|

n configurations) we con-
sider instead a greedy version described in Algorithm 1, called max-
min. It is clear that the solution (display) found by this algorithm is
sub-optimal and depends on the initial setting of the first element in
D0 (see comment in Algorithm 1). Nevertheless, as show in exper-
iments (see Fig 2, top-left), this procedure is effective compared to
random selection while being efficient (its complexity isO(n)). This
procedure is also more appropriate than usual clustering algorithms
(for instance k-means) as it explicitly seeks to maximize diversity of
samples in D0.

3. LEARNING AND DISPLAY MODELS

3.1. Learning Model

Considering the union of displays and their labels ∪tk=0(Dk,Yk),
the goal of this model is to learn to distinguish between relevant
changes and irrelevant ones as well as no changes. For that purpose
we train a decision criterion ft for each iteration t, based on SVMs,
and we use it to predict labels of patch pairs in I − ∪tk=0Dk.
Given a training set {(xj ,yj)}j ⊆ ∪tk=0(Dk,Yk), SVM learn-
ing consists in finding a vector of training parameters {αj}j and
a scalar b that reduce an empirical loss while maximizing the mar-
gin between the positive and the negative data in {(xj ,yj)}j [34].
Given a test data x, its label y is set to sign[

∑
j αjyjκ(x,xj) + b];

here κ is a symmetric, continuous and positive definite func-
tion, also known as kernel [34]. In practice, we use the lapla-
cian kernel defined as κ(x,x′) = exp(−‖x − x′‖2/σ), with
σ = E{x,x′:‖x−x′‖2≤δ}‖x − x′‖2, and E being the expectation.
This kernel choice is motivated by the good performance of SVMs,
in different tasks including relevance feedback, w.r.t the use of many
other kernels.

As positive and negative training classes in ∪tk=0(Dk,Yk) are
very unbalanced (due to scarceness of relevant changes), we use
randomization to train many SVM classifiers (denoted {g`}`); we
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Fig. 1. (Left) This figure shows examples of “changes” and “no
changes” taken from a particular ground truth (see experiments) as
well as their “display zero”. These points correspond to {ψ(qi) −
ψ(pi)}i with ψ(pi), ψ(qi) being the projections of a reference
patch pi and a test patch qi on the two principal components of PCA
(again see experiments). For ease of visualization, only a subset of
changes and no-changes were displayed among 53, 550 patch pairs.
(Right) This figure shows patch pairs of display zero. Red rectangles
stand for no-changes while green rectangles correspond to changes,
according to the oracle.

train each classifier g` with the same number of positive and neg-
ative examples which are randomly taken from I. Then, we pre-
dict the unknown label yi of a given test data xi using voting, i.e.,
yi ← sign[ft(xi)] with ft(xi) =

∑
` sign[g`(xi)]; and this makes

the final decision criterion ft unbiased towards the dominant class
(i.e., no-changes). Note that this process is extremely fast as train-
ing3 the SVMs {g`}` involves subsets, in ∪tk=0(Dk,Yk), with very
small cardinalities.

3.2. Display Model

At each iteration t, the goal of the display model is to select a
display Dt+1 ⊂ I − ∪tk=0Dk that minimizes the generalization
error of the next decision criterion ft+1 and hopefully reaches the
actual decision boundary. It is clear that a brute force strategy that
(i) enumerates all the possible displays D ⊂ I − ∪tk=0Dk, (ii)
builds a decision function on ∪tk=0Dk ∪ D and (iii) estimates their
generalization power, is out of hand; we consider instead heuristics.
Display selection heuristics are usually related to active learning but
one should be cautious in using these heuristics since many of them,
which have nevertheless led to advances in several applications, can
perform worse than the basic display strategy consisting in choosing
uniformly randomly data of the display (see [32] and references
within for a more detailed discussion).
As discussed earlier, our heuristics select the display in order to
refine the current estimate of the decision function and also to find
uncharted spaces in which the actual decision boundary exists. The
first strategy, exploits our knowledge about the location of the deci-
sion boundary while the second one, explores new locations of that
boundary. As will be shown through this section, our display se-
lection strategy, seeks to find the good balance between exploration

3http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

and exploitation.

We consider five display strategies which either discover and/or
locally refine modes of decision criteria. A good strategy is the one
which displays many ambiguous data, close to the decision bound-
ary that could be misclassified by the subsequent classifier ft+1.

Strategy-1 (Only Exploration). Data in display Dt+1 are selected
using a search strategy similar to display zero, i.e., by maximizing
the dissimilarity between data in Dt+1 and ∪tk=0Dk resulting into
a new display Dt+1 including representatives of span(I). This
strategy is efficient when modes of decision boundary are spread.

Strategy-2 (Only Exploitation). Again we use the same display
strategy as display zero but we restrict Dt+1 ⊂ {x : ft(x) ≥ 0}.
This strategy suggests data which are usually close to the decision
boundary (i.e., ambiguous) and it is efficient when the class of tar-
geted changes includes a single mode.

Strategy-3 (Explorations followed by Exploitations). Displays
are selected by applying k explorations followed by T − k exploita-
tions (In practice k = 5).

Strategy-4 (Exploitations followed by Explorations). Displays
are selected by applying k exploitations followed by T − k explo-
rations (In practice k = 5).

Strategy-5 (Adaptive Explorations/Exploitations). At t = 0, we
apply exploration, then at each iteration t ≥ 1, we select the subse-
quent displayDt+1 depending on how good was the previous display
Dt. In practice, we either keep the previous action (exploration or
exploitation) or we switch from exploration to exploitation or vice-
versa, depending on a score St =

∑
x∈Dt

1{sign[ft−1(x)]6=C(x)}.
This score measures how informative is the display Dt obtained us-
ing the previous action; a good action should produce a display that
allows the user to correct as many change detection results as pos-
sible thereby discovering new modes and better refining the subse-
quent decision criterion. In practice, we switch from one action to
the other iff St ≤ 1

3
|Dt|.

4. EXPERIMENTS

Test Set. In order to evaluate the performance of our interactive
change detection method, we run experiments on two (reference
and test) Quick-Bird 2 satellite images of 7, 165 × 6, 776 pixels
with a spatial resolution of 2.4m; these two images are registered
and correspond to the same area with many relevant changes (new
buildings, etc.) and no-changes (including irrelevant ones; illumina-
tion, noise, etc.), see Fig. 1, right. Both reference and test images
are processed in order to extract 53, 550 non overlapping patches,
each one includes 30 × 30 pixels in RGB. The underlying ground
truth contains 52, 558 negative patches (no changes) and only 992
positive patches (relevant changes), so < 2% of these patches corre-
spond to relevant changes.

Features. Each patch (in reference and test images) is encoded
with 100 coefficients corresponding to its projection on the 100
principal axes of principal component analysis (PCA). These prin-
cipal axes of PCA were estimated using all patches of the reference
image and capture more than 90% of the statistical variance of the
data. Afterwards each patch pair xi = (pi,qi) in I is described
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as ψ(qi)−ψ(pi) with ψ(pi) beeing the projection of pi using PCA.

Evaluation measures. Performances are reported using equal error
rate (EER) on unlabeled data of I. EER is the balanced general-
ization error that equally weights errors in change and no-change
classes. A smaller EER implies better performance.

Display strategies. We run the RF algorithm described in Section 2,
with different display strategies, in order to evaluate their impact on
performances; Table. 1, shows the underlying equal error rates. First,
we observe that combined exploration-exploitation (i.e., strategies
3, 4 and 5) outperform exploration/exploitation when taken sep-
arately (i.e., strategies 1 and 2). Moreover, adaptive selection of
exploration/exploitation (i.e., strategy 5) outperforms combined
exploration-exploitation when taken successively (i.e., strategies 3
and 4). All these results were obtained by averaging EERs of 50
relevance feedback runs, each one corresponds to a random setting
of the first element in D0 (see comment in Algorithm 1). These
EERs reach their smallest values at the end of the iterative process,
i.e., when many modes of the decision criteria are explored and
exploited (see again Table. 1), and this happens after 10 iterations
with only (16 × 10)/53, 550 × 100 ∼ 0.3% of patch pairs being
visited and labeled by the oracle.

Strategy-1 Strategy-2 Strategy-3 Strategy-4 Strategy-5
(Baseline-1) (Baseline-2)

t (EER+sd) (EER+sd) (EER+sd) (EER+sd) (EER+sd)
0 48.7± 7.6 48.7± 7.6 48.7± 7.6 48.7± 7.6 48.7± 7.6
1 20.1± 4.5 43.1± 5.0 20.1± 4.5 43.1± 5.0 20.1± 4.5
2 17.1± 4.0 34.2± 6.1 11.5± 2.3 34.2± 6.1 12.0± 2.6
3 15.6± 2.6 21.5± 10.5 7.7± 1.8 21.5± 10.5 8.0± 1.9
4 15.1± 2.5 17.2± 11.8 7.4± 1.9 17.2± 11.8 7.3± 1.8
5 14.5± 2.4 12.6± 9.4 7.1± 1.6 12.6± 9.4 6.6± 1.6
6 14.0± 2.6 10.4± 7.7 6.4± 1.6 10.4± 7.7 6.1± 1.4
7 13.9± 2.4 9.3± 6.4 6.0± 1.6 9.3± 6.4 5.9± 1.4
8 13.8± 2.5 8.5± 5.6 5.5± 1.7 8.5± 5.6 5.7± 1.3
9 13.5± 2.2 7.6± 4.7 5.2± 1.7 7.4± 1.0 5.6± 1.3

Table 1. This table shows evolution of EERs (in %) and standard
deviations, w.r.t iteration number t. As t increases accuracy (1-EER)
gets better and reaches 94.8%.

Comparison. We compare the performance of our change detection
criteria ft, t = 0, . . . , T − 1, against two criteria, which are inde-
pendent of t
(i) Image difference: a patch pair xi = (pi,qi) ∈ I is declared as a
change iff ‖ψ(pi)− ψ(qi)‖2 ≤ ε.
(ii) Large scale SVM: we train an SVM decision function (denoted
f ) and we use it to detect changes in I. The training set of f (de-
noted T ′ = {(x′i,y′i)}i) includes 291 positive examples and 2, 624
negative examples extracted from two other Quick-Bird 2 satellite
images (including 1, 677× 1, 619 pixels), of the same area, taken at
two different instants. Note that the training set T ′ is much larger
than the one used to train the final classifier fT−1.

Fig. 2, top-right shows EERs of these two baselines (i)+(ii) as
well as our proposed method. The out-performance of the proposed
method, comes essentially from the adaptation of decision functions
{ft}t to the user’s intention as well as to reference and test images
in I. Figs. 2-bottom, show the underlying detection and false alarm
rates. Whereas the three methods converge to comparable detection
rates, the proposed method dramatically reduces false alarms, at the
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Fig. 2. (Top-left) this figure shows a comparison of two “display
zero” selection procedures: max-min and random selection. (Other
figures) show a comparison of our RF method w.r.t the two baselines
discussed in Section 4: image difference and large scale SVM. All
these results are obtained by averaging EERs, detection and false
alarm rates of 50 RF runs. For all these experiments strategy-5 is
used as a display model.

end of the iterative process. These figures show that the proposed
RF algorithm is able to find relevant changes and discard many
irrelevant ones. At each iteration t, learning and display strategies
run promptly (in less than 1s), provided that PCA features are ex-
tracted off-line; so the user gets updated change detection results in
real-time.

5. CONCLUSION

We introduced in this paper a novel satellite image change detection
algorithm based on relevance feedback. The strength of this method
resides in its ability to adapt change detection criteria to input im-
ages as well as user’s intention.
The proposed method is interactive and it is based on a Q&A model
that effectively and efficiently learns from user’s responses and also
asks the most informative questions to the user. This improves detec-
tion rates while reducing dramatically false alarms due to irrelevant
changes.

Even though the proposed method is dedicated to detect changes
between pairs of satellite images, it can easily be extended to se-
quences of multi-temporal images. Indeed, one can exploit the re-
dundancy in these sequences, in order to further enhance perfor-
mance.
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