
K-CENTROIDS-BASED SUPERVISED CLASSIFICATION OF TEXTURE IMAGES:
HANDLING THE INTRA-CLASS DIVERSITY
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ABSTRACT

Natural texture images exhibit a high intra-class diversity due
to different acquisition conditions (scene enlightenment, per-
spective angle, . . . ). To handle with the diversity, a new super-
vised classification algorithm based on a parametric formal-
ism is introduced: the K-centroids-based classifier (K-CB).
A comparative study between various supervised classifica-
tion algorithms on the VisTex and Brodatz image databases is
conducted and reveals that the proposed K-CB classifier ob-
tains relatively good classification accuracy with a low com-
putational complexity.

Index Terms— Supervised classification, texture, Jeffrey
divergence, information geometry.

1. INTRODUCTION

In research area devoted to machine vision, texture analysis is
still a challenging issue for applications using classification,
segmentation or indexing approaches. One of the major prob-
lem is the diversity in appearance of the image samples com-
ing from the same class of natural texture. Diversity relates
jointly to phenomena such as the near-stationary content but
not strict, the changes in illumination or in viewing position
(as shown in Fig. 1) and so on.

Fig. 1. Natural diversity inside Wood class of the Brodatz
database

The consequence is that intra-class diversity leads to pos-
sible misclassification if we work with just one training sam-
ple to extract features. A single image sample does not allow
the understanding of the underlying geometry of the cluster
in the feature space. Diversity induces a complex geometric
expansion of the cluster and leads to a ”macro-cluster”. In
order to provide invariant approaches to the intra-class diver-
sity with a robust modeling, the geometry of the macro-cluster
must be characterised. Considering the above remarks, an ob-
vious approach for taking into account the diversity is to con-
sider supervised approach based on a large training database.
Samples form a set of representative instances of the diversity.

Thanks TOTAL for funding.

A possible solution for classifying samples, without any prior
on the class probability, is to propose instance-based approach
such as K-NN algorithm. However, a main disadvantage of
the K-NN method is the required time to estimate the class of
a test image. Let us consider NTr training samples in a space
of dimension d. Then applying the method to one test sample
requiresO(NTrd) time. If the trained features are stored in a
sophisticated data structure, e.g. kd-tree, then finding nearest
neighbours can be done much faster if the dimensionality d
is small, typically less than 20, which is generally too low in
practice [1].

In the field of texture analysis, diversity has been consid-
ered by few authors. Varma and Zisserman [2] have proposed
a K-means algorithm to partition the macro-cluster into a fi-
nite number of sub-clusters. This finite partition enables au-
thors to reduce the complexity against K-NN. However the
partitioning is done directly on the magnitude of the filter re-
sponses using a quadratic norm. The issue is that data draw
a non-euclidean high dimensional. For this manifold, the Eu-
clidean metric is not adapted, leading to algorithm with lim-
ited performances and implies to work with a high number of
sub-clusters. In the context of texture modeling, various au-
thors have proposed the use of jointly scale-space approaches
and statistical modeling characterize the textural content [3, 4,
5, 6, 7, 8, 9]. The modeling process consists in fitting the his-
togram of each sub-band with a given parametric probability
density function (pdf). The modeling process results in homo-
geneous textured samples summarized by a limited number of
parameters, inducing directly a dimension reduction in classi-
fying. In [8], Do and Vetterli use a centred generalized Gaus-
sian distribution (GGD). In this seminal work, it is also shown
that probabilistic similarity measure such as Kullback-Leibler
divergence, which can be derived in closed-form in terms of
pdf parameters, can be used. Thereby, the parametric space
forms a smooth Riemannian manifold for which well founded
processing can be derived. In this way, Choy and Tong pro-
posed in [9] to compute a centroid from several instances of
parameter vectors from each sub-band for a given class. Even
if the proposed algorithm exploits the geometrical properties
of the manifold, the main drawback of the last proposal is
that classifying with only one centroid is not enough robust to
handle diversity.
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In this paper, our contributions are two fold. First, an ex-
tension of the Choy’s algorithm, which takes into account the
direction of the derivatives in order to speed-up the conver-
gence of the steepest descent, is derived. We also give the
expressions of the update in terms of manifold constraints.
Second, we propose to use the K-means algorithm inside the
K-centroid-based (K-CB) supervised classification. This su-
pervised classification is new because Varma and Zisserman
does not use the parametric point-of-view. This new super-
vised classification, enhances the Choy and Tong algorithm
by using a higher number of centroids according to the nat-
ural diversity found in texture images. Finally, numerical
application of K-CB shows an increase of overall accuracy
against Choy and Tong algorithm and a computation time sig-
nificantly lower than the 1-NN algorithm.

2. BARYCENTRIC REPRESENTATION

Let I be a texture image. Let No and Ns be respectively the
number of orientation and scale of a multi-scale decomposi-
tion. I is hence decomposed into No × Ns sub-bands. Let
us consider the parametric vector λs,o of the pdf associated to
each sub-band. The collection T of those parametric vectors
will represent the texture image I .

T = {λs,o|s = 1, . . . , Ns, o = 1, . . . , No} . (1)

The components λs,o of the vector T form a parametric
Riemannian manifold. In the sequel of the paper, we callM
the corresponding manifold.

2.1. Computing a centroid
Let (Tc,n)

NTr

n=1
be NTr training samples from the same class c.

In [9], Choy and Tong have introduced an iterative algorithm
to estimate the barycentric sample T̄c (also called centroid)
from this collection of samples. Let lc(T ) be the cost function
defined by:

lc(T ) =
1

NTr

NTr
∑

n=1

m(T ‖Tc,n), (2)

the centroid is obtained as the solution of the following opti-
mization problem:

T̄c = argmin
T∈M

lc(T ). (3)

The dissimilarity measure m between two instances of T
is computed as the sum of the dissimilarity measures SIM be-
tween all sub-band distributions at each scale and orientation:

m(Tc,n‖Tc′,n′) =

Ns
∑

s=1

No
∑

o=1

SIM(p(x;λc,n,s,o)‖p(x
′;λc′,n′,s,o));

(4)

where p(x;λc,n,s,o) is the probabilistic distribution which
model the sub-band coefficients x at scale s and orientation o.

This paper introduces the natural gradient algorithm [10,
11] to solve the optimization problem defined in (3). Let T̄c

be the solution of (3), i.e. the minimizer of the cost func-
tion lc(T ). To speed-up the convergence, the Fisher infor-
mation matrix G(T ) is included with the gradient ∇lc(T ) of
the cost function in the optimization step. Then, the sequence
(

T̄c,i

)∞

i=1
defined by:

T̄c,i+1 = ProjM
(

T̄c,i −G−1(T̄c,i)∇lc(T̄c,i)
)

, (5)

converges to the centroid T̄c. The operator ProjM repre-
senting the projection on the manifoldM assures that T̄c be-
longs to the manifoldM. Practically, on the VisTex database,
the projected gradient descent algorithm of [9] converges in
170 iterations whereas the proposed projected natural gradi-
ent converges in only 9 iterations to the same solution.

In the following, the computation of the centroid will be
applied to the generalized Gaussian distribution (GGD) since
this model has been successfully validated for the modeling
of wavelet coefficients of texture images [8, 7, 12]. Note that
it can be generalized to any other stochastic models provided
that a closed-form expression of the similarity measure m and
the Fisher information matrix exist.

2.2. Application to the generalized Gaussian distribution
The probability density function of an univariate GGD is

p(x;λ) =
1

αΓ(1/β + 1)
exp

{

−

(

|x|

α

)β
}

, (6)

where Γ(z) =
∫

R+ tz−1e−tdt is the Gamma function, α and
β being respectively the scale and shape parameters. In the
following the parameter space for one sub-band is represented
by λ = {α, β}.

The Jeffrey divergence (i.e. the double sided Kullback-
Leibler divergence) is considered as a dissimilarity measure
SIM between two GGDs, its expression is given by [8]:

JD(p(x;λ)‖p(x;λ′)) = A+A′ −
1

β
−

1

β′

A =
Γ((β′ + 1)/β)

α−β′(α′)β′Γ(1/β)
, A′ =

Γ((β + 1)/β′)

(α′)−βαβΓ(1/β′)
.

(7)

Next, by combining (4) and (7), one obtains the dissimilarity
measure m between two samples. Then, to derive the cost
function and obtain its gradient∇lc(T ), the partial derivatives
of the Jeffrey divergence are needed. It yields:

∂JD
∂α

(λ, λ′) =
β′

α
A+

β

α
A′,

∂JD
∂β

(λ, λ′) = −

(

A′

[

ln

{

α′

α

}

+
1

β′
Ψ

(

β + 1

β′

)]

−

A

[

Ψ

(

1

β

)

− (β′ + 1)Ψ

(

β′ + 1

β

)])

+
1

β2
,

(8)

where Ψ(z) is the digamma function.
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Fig. 2. Scatter plot in the α/β plane: (a) for textures with low
intra-class diversity and (b) for textures with different orien-
tations.

To compute the natural gradient, the 2×2 Fisher informa-
tion matrix of a GGD is also required. Its components are:

gαα(λ) =
β

α2
, gαβ(λ) =

1

αβ

(

Ψ

(

1

β

)

− β + 1

)

,

gββ(λ) =
β + 1

β4
Ψ′

(

1

β

)

+
1

β2
+

1

β3

[

Ψ2

(

1

β

)

+

2(β + 1)Ψ

(

1

β

)]

.

(9)

Finally, by injecting (8) and (9) in (5), one can iteratively es-
timate the centroid for generalized Gaussian distributed sub-
bands.

2.3. Capabilities and limits of an unique centroid
In this section, some experiments are conducted on real tex-
ture images to evaluate the potential and limits of the centroid
definition. Fig. 2 draws a scatter plot of the training sample
(blue cross) in the α/β feature space. The red square corre-
sponds to the location of the estimated centroid. As observed
on Fig. 2.(a), when the scatter plot is compact, the centroid
represents well the cluster. Nevertheless, when the intra-class
diversity is large, an unique centroid is not able to capture this
diversity. This is the case for Fig. 2.(b) where the samples are
issued from the same texture class but with different orienta-
tions. The natural diversity inside a class of texture images are
due to many reasons such as differences in the scene enlight-
enment, differences in the scale considered, differences in the
perspective, . . . This diversity modifies the shape of the scat-
ter plot by stretching or splitting the clusters. To capture this
intra-class diversity, we propose in the next section a multi-
barycentric approach based on an adaptation of the K-means
algorithm to the centroid definition introduced in Section 2.

3. K-CENTROIDS-BASED SUPERVISED
CLASSIFICATION (K-CB)

3.1. Principle
For each class c = 1, . . . , Nc, K centroids (T̄c,k)

K
k=1

are com-
puted according to the K-means classifier described in Algo-
rithm 1. Let Tt be a test sample. This sample is labeled to the
class ĉ, corresponding to the class of the closest centroid, i.e.

ĉ = argmin
c

{

m(Tt‖T̄c,k)|∀k = 1, . . . ,K
}

. (10)
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Fig. 3. (a) Scatter plot in the α/β plane for the 3rd sub-band
and (b) example of samples from each cluster.

In the following, this supervised classification algorithm will
be referred to K-CB. Note that the algorithm of Choy and
Tong presented in Section 2 is a particular case of K-CB
when K = 1. Note also that when K is equal to the num-
ber of training samples per class, NTr, each training sample
is a centroid and the K-CB classifier reduces to the nearest
neighbour (1-NN) classifier.

Algorithm 1 Pseudo-code of the proposed K-means algo-
rithm

Require: A collection of NTr training samples (Tn)
NTr

n=1
and

K the number of clusters
Ensure: A collection of K centroids

(

T̄k

)K

k=1

1: Initialization of K centroids
(

T̄k

)K

k=1

2: Computation of the intra-cluster inertia Iintra

3: repeat
4: Iold ← Iintra

5: for each training sample n do ⊲ Assignment
6: kn ← argmin

k

m(T̄k‖Tn)

7: end for
8: for each cluster k do ⊲ Update the centroids
9: Nk ←

∑N

n=1
δ(kn, k)

10: T̄k ← argmin
T

{

1

Nk

∑N

n=1
m(T ‖Tn)δ(kn, k)

}

11: end for
12: Iintra ←

∑K

k=1

1

Nk

∑N

n=1
m(T̄k‖Tn)δ(kn, k)

13: until Iold ≥ Iintra

This algorithm deals with the Kroneckner symbol δ(a, b)
that equals 1 if a = b and 0 otherwise.

3.2. Validation

Fig. 3(a) draws a projection of the scatter plot of training sam-
ples (triangle) in the α/β plane for a sub-band. The training
samples are issued from the same texture class but with differ-
ent orientations. The proposed K-means classifier is applied
with K = 2. The red and blue squares correspond to the loca-
tion of the two estimated centroids. In these experiments, the
K-means classifier is applied on a manifoldM of dimension
241. Only one projection is displayed in Fig. 3(a).

1For the decomposition we use the Steerable Pyramid [13] with 2 scales
and 6 orientations and 2 parameters (α and β) per sub-band
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Fig. 4. Evolution of the average overall accuracy as a function
of the number of training samples on the VisTex database.

Fig. 3 (b) shows some examples of texture image sam-
ples associated to both clusters. After performing a K-means
classifier, each clusters are separated according to their prin-
cipal orientation. The two centroids are representative of the
diversity inside this texture class.

4. RESULTS
4.1. Context
To evaluate the performance of the supervised classification
algorithms, the database is split into a training database and
a disjoint testing database. Practically, NTr training samples
are randomly selected for each texture class, the remaining
sample are used as testing samples. Two databases are con-
sidered here: VisTex [14] with 40 classes and Nsa = 16 im-
ages per class (128 × 128 pixels), and Brodatz [15] with 13
classes and Nsa = 112 images per class (128 × 128 pixels).
The VisTex database contains some texture images with dif-
ferent illumination conditions, while the Brodatz one exhibits
a higher intra-class variability due to various viewing con-
ditions such as rotated image. In the following, 100 Monte
Carlo runs have been used to evaluate the performance of the
different classifiers (overall accuracy and error bars).

4.2. Results and discussion
In this experiment, the stationary wavelet decomposition
(with 2 scales) with Daubechies’ filter db4 is considered.
Fig. 4 draws the evolution of the average overall accuracy as
a function of the number of training samples on the VisTex
database for the nearest neighbour (1-NN in red), the one
centroid [9] (1-CB in blue) and the proposed K-CB classifier
with 3 centroids (3-CB in green). A gain of more than 10
points is observed when 3 centroids are considered instead of
only 1. Hence, the proposed 3-CB classifier allows a better
characterization of the intra-class diversity. Note also that
performances of the 3-CB classifier are close to those of the
1-NN. However, the computation complexity is significantly
lower with the K-CB classifier2, since only K computations
of the similarity measure between the query and the centroids
are necessary while NTr are required for the 1-NN classifier.

2The computation of the centroids being done off-line for the K-CB clas-
sifier.

1-NN 1-CB [9] K-CB 1-NN
NTr K NSa/2 NSa/2 NSa/2

VisTex 79 % ±2 73 % ±2 89 % ±2 94 % ±1
Brodatz 70 % ±3 70 % ±1 97 % ±2 99 % ±1

Table 1. Average overall accuracy for the different supervised
classifiers on the VisTex and Brodatz databases.

Since computational considerations play a key role for any
practical application, the 1-NN classifier cannot be used for
large database. As a consequence, the K-CB classifier is a
good trade-off between classification accuracy and computa-
tion complexity.

Table 1 displays the average overall accuracy for the dif-
ferent classifiers (1-NN, 1-CB and K-CB) on the VisTex and
Brodatz databases (K equals respectively 3 and 10 for the two
databases). Note that two 1-NN classifiers have been consid-
ered, one with K training samples per class (the same com-
plexity as the K-CB) and one where half of the database is
used for training. In this experiment, the steerable pyramid
with 2 scales and 8 orientations has been used for the decom-
position. As observed in Table 1, for the same computational
complexity, the proposed K-CB classification exhibits a gain
of about 10 and 27 points compared to the nearest neighbour
classifier (1-NN) with NTr = K . Hence, an adapted selection
of centroids with the K-means allows an increase of the over-
all accuracy. Note also, that the performance of the K-CB
are very close to the 1-NN classifier with the same number of
training data. In addition, the proposedK-CB classifier based
on a parametric point of view outperforms a texton-based ap-
proach such as the one proposed by Varma and Zisserman
in [2] which has an overall accuracy of about 82% on the Vis-
Tex database with 20 centroids.

5. CONCLUSION

In this paper, a K-centroids-based (K-CB) supervised classi-
fication has been introduced to handle the natural intra-class
diversity of texture images. The proposed K-CB provides a
good compromise between the k-NN classifier and 1-Centroid
method proposed by Choy and Tong [9] in the framework of
the stochastic parametric modeling. Moreover, we show also
the superiority of our approach against the non-parametric
one proposed by Varma and Zisserman [2] Further works will
concern the development of a supervised classification algo-
rithm with an adapted and automatic number of centroids per
texture class (which will depend on the intra-class diversity).
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