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ABSTRACT

A novel mixture model with spatial constraint is proposed for
image segmentation. This model assumes that the pixel label
prior probabilities are similar if the pixels are geometric close.
An energy function is defined on the spatial space for measur-
ing the spatial information. We also derive an energy function
on the observed data space from the log-likelihood function of
the standard mixture model. We estimate the model param-
eters and posterior probability by minimizing the combina-
tion of the two energy functions, using the gradient descent
algorithm. Numerical experiments are presented where the
proposed method is tested on synthetic and real world im-
ages. These experimental results demonstrate that the pro-
posed method achieves competitive performance compared to
spatially variant finite mixture model.

Index Terms— Energy minimization, mixture model,
spatial information, gradient descent algorithm, image seg-
mentation.

1. INTRODUCTION

Image segmentation is an important step in image processing
and computer vision. Its goal is to classify image pixels based
on the coherence of certain features such as intensity, color,
texture, motion, location.

The mixture model [1] is one of the Bayesian-based meth-
ods. It is a flexible and powerful technique for image seg-
mentation. The advantages of the standard mixture model is
that it has a simpler form, and requires a small number of
parameters. However, the main drawback is that the pixels
are considered independent in the mixture model. In order to
take into account the spatial dependence between image pix-
els, a set of spatially constrained mixture model have been
proposed for image segmentation [2–6].

The spatially variant finite mixture model (SVFMM) [2,3,
6] assumes that the prior distribution form a Markov random
field. In [4], the prior probability is based on Gauss-Markov
random field, which controls the degree of smoothness for
each cluster.

In this paper, we introduce an energy function on feature
space based on mixture model. This energy function mea-

sures the disagreement between the labels and the observed
data. Furthermore, in order to incorporate the spatial relation-
ships into the prior distribution, we propose a energy func-
tion on spatial space. This spatial energy function measures
the spatial smooth, and it uses the locally invariant idea [7],
i.e., the nearby pixels are likely to have similar labels. It
has been shown that segmentation performance can be sig-
nificantly enhanced if the geometrical structure is exploited
and the local invariance is considered. We use the gradient
descent method [8] to solve the proposed model.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the details of the proposed model. The details
of the gradient descent algorithm are presented in Section 3.
In Section 4, we show the experimental results.

2. THE PROPOSED METHOD

Let X = {xp, p ∈ P} denote an observed image, where
xp is the observation of pixel p and P is the set of pixels
in the scene. We also denote a label set F = {1, 2, ...K},
where K is the total number of classes. The goal of the image
segmentation/classification problem is to assigns each pixel p
a label fp ∈ F .

The image segmentation/classification problem can be
formulated in terms of energy minimization. The input is a
set of pixels P and a set of labels F . The goal is to find a
mapping from P to F which minimizes a particular energy
function. A standard form of the energy function [9, 10] is

E(f) = Edata(f) + Espatial(f) (1)

where Edata(f) measures the quality of a particular segment
of the feature space, while Espatial(f) measure the spatial
smooth of class labels.

2.1. Energy Function of Feature

In the proposed model, the prior distribution P (fp = k) is
defined in the following form:

P (fp = k) = πpk (2)
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The prior distribution πpk of pixel p belonging to the class k

should satisfies the constraints 0 ≤ πpk ≤ 1 and
K∑

k=1

πpk = 1.

The proposed model also assumes that the density func-
tion at a pixel observation xp is given by [1]

P (xp) =

K∑
k=1

P (fp = k)P (xp|fp = k) (3)

where P (xp|fp = k) is a conditional density on the class
label k, i.e.

P (xp|fp = k) = P (xp|θk)

=
1√
2πσ2

k

exp

(
− (xp − µk)

2

2σ2
k

)
(4)

where θk is the parameter of the kth distribution component.
In general, we assume that the probability distribution is a
Gaussian one.

The log-likelihood function of the proposed model is
given by

L(π, θ) =
N∑

p=1

log
K∑

k=1

P (fp = k)P (xp|fp = k)

=

N∑
p=1

log

K∑
k=1

πpkP (xp|θk) (5)

The log-likelihood function is considered as a function of the
parameters π and θ.

Then, we introduce the Jensen’s inequality [11], which

states that given a set of numbers λk ≥ 0 and
K∑

k=1

λk = 1, we

have

log

(
K∑

k=1

λkzk

)
≥

K∑
k=1

λk log zk (6)

Note that the posterior probability P (fp = k|xp) always

satisfies the conditions: P (fp = k|xp) ≥ 0 and
K∑

k=1

P (fp =

k|xp) = 1. We apply the Jensen’s inequality to the log-
likelihood function (5), and we have

L(π, θ) =

N∑
p=1

log

K∑
k=1

πpkP (xp|θk) (7)

=
N∑

p=1

log

(
K∑

k=1

πpkP (xp|θk)×
P (fp = k|xp)

P (fp = k|xp)

)

≥
N∑

p=1

K∑
k=1

P (fp = k|xp) log

(
πpkP (xp|θk)
P (fp = k|xp)

)

We define

L(f, π, θ) =
N∑

p=1

K∑
k=1

P (fp = k|xp) log

(
πpkP (xp|θk)
P (fp = k|xp)

)
(8)

Thus, maximizing the log-likelihood function L(π, θ) is
equivalent to maximizing the log-likelihood function L(f, π, θ).
Since the logarithm is a monotonically increasing function, it
is more convenient to consider the negative logarithm of the
likelihood function as an energy function. Thus, the energy
function of the feature space can be expressed as

Edata(f, π, θ) = −L(f, π, θ) (9)

=

N∑
p=1

K∑
k=1

P (fp = k|xp) log

(
P (fp = k|xp)

πpkP (xp|θk)

)
In order to account for the spatial dependence between

image pixels, the proposed method present a spatial energy
function to measure the spatial information.

2.2. Spatial Energy Function

In this subsection, we describe a different modeling strategy
to take the spatial information of the priors into account. A
natural assumption could be that if two pixels p, q are close in
the geometry, then the prior probabilities πp and πq are also
close to each other.

In this paper, we use the Gaussian radial basis function to
measure the pairwise closeness. The geometric closeness h is
a Gaussian function of the magnitude of the relative position
vector of pixel p from pixel q, ∥ up − uq ∥. The geometric
closeness function is given as a decreasing function h when
the distance ∥ up − uq ∥ increases.

hpq = exp
(
−γ∥up − uq∥2

)
(10)

where γ is a free parameter, which defines the desired struc-
tural location between neighboring pixels. up and uq are the
spatial location of the pixel p and q, respectively. We set
γ = 10.

We can use either Euclidean distance

d(πp, πq) = ∥πp − πq∥2 (11)

to measure the dissimilarity between prior probabilities πp

and πq.
With the above defined closeness function h, we can use

the following term to measure the smoothness of the prior
probability [12].

R(π) =
1

2

N∑
p,q=1

∥πp − πq∥2hpq (12)

By minimizing the above term R, we expect that if two
pixels p and q are close, the priors πp and πq are simi-
lar to each other. Thus, we consider this term R as the
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Espatial(f, π). Combining this spatial energy function with
the energy function Edata(f, π, θ), the objective energy func-
tion becomes

E(f, π, θ) =
N∑

p=1

K∑
k=1

P (fp = k|xp) log(P (fp = k|xp))

−
N∑

p=1

K∑
k=1

P (fp = k|xp) log(πpkP (xp|θk))

+
1

2

N∑
p,q=1

∥πp − πq∥2hpq (13)

3. GRADIENT DESCENT ALGORITHM

In this section, we use the gradient method for adjusting the
parameters and posterior probability to minimize the above
energy function E (13). The proposed algorithm for energy
function E (13) can be summarized as follows:

Step 1: Initialize the parameters Θ = (µ, σ, π) by the
following substeps.

a) Initialize the mean µk and covariance σk using the K-
means algorithm. The initial value of πpk is set to 1/K.

b) Calculate the Gaussian distribution P (t)(xp|θk) from
(4). Then, calculate the posterior probability P (fp = k|xp),
which is given

P (t)(fp = k|xp) =
π
(t)
pkP

(t)(xp|θk)∑K
k=1 π

(t)
pkP

(t)(xp|θk)
(14)

c) Update the parameters µk, σk, πpk using the following
rule

µ
(t+1)
k =

N∑
p=1

P (t)(fp = k|xp)xp

N∑
p=1

P (t)(fp = k|xp)

(15)

[σ2
k]

(t+1) =

N∑
p=1

P (t)(fp = k|xp)[xp − µ
(t+1)
k ]2

N∑
p=1

P (t)(fp = k|xp)

π
(t+1)
pk =

P (t)(fp = k|xp)
K∑

k=1

P (t)(fp = k|xp)

d) Set Θt = Θt+1, and return to step b) until t < T ,
T = 3.

e) Calculate the posterior probability P t(fp = k|xp).
Step 2: Update parameters Θ = (µ, σ, π) to obtain the

new parameters Θ(t+1), which can be calculated and updated
using the gradient method [8]

Θ(t+1) = Θ(t) − η∇E(Θ(t)) (16)

where η is the learning rate and its value is sufficiently small.
In this paper, we have selected η = 10−5, and ∇E(Θ(t)) =
[ ∂E∂µk

, ∂E
∂σk

, ∂E
∂πk

].
The derivative of E with respect to µk, σk, πpk are re-

spectively given by

∂E

∂µk
= −

N∑
p=1

P (fp = k|xp)

(
xp − µk

σ2
k

)
(17)

∂E

∂σk
= −

N∑
p=1

P (fp = k|xp)

(
− 1

σk
+

(xp − µk)
2

σ3
k

)
∂E

∂πpk
= −P (fp = k|xp)

πpk
+

N∑
q=1

hpq ∥ πpk − πqk ∥

Using the above formulas to update the parameters µ, σ, π,
and we can obtain the new parameters µt+1

k , σt+1
k , πt+1

pk .
Step 3: Update P (fp = k|xp) to obtain the new posterior

probability. The updating rule is

P (t+1)(fp = k|xp)

= P (t)(fp = k|xp)− η∇E(P (t)(fp = k|xp)) (18)

The derivative of E, with respect to the posterior proba-
bility P (fp = k|xp) are given by

∂E

∂P (fp = k|xp)

= logP (fp = k|xp)− log(πpkP (xp|θk)) + 1 (19)

Step 4: Check for convergence of the energy function. If
the convergence criterion is not satisfied, then set Θt = Θt+1,
P (t+1)(fp = k|xp) = P (t)(fp = k|xp) and return to Step 2.

Table 1. comparison of the proposed method with other meth-
ods (three-class image), Misclassification ratio (%)

Gaussian Noise GMM SVFMM ProposedMethod
(0 mean, var)

var=0.01 11.75 3.71 1.16
var=0.02 19.24 10.18 2.33
var=0.03 25.95 16.62 4.51
var=0.04 30.15 22.10 7.74
var=0.05 32.88 26.04 9.85

4. EXPERIMENTS

In this section, we provide experimental results on synthetic
and real-world images for evaluating the proposed algorithm.

In the first experiment, we use a synthetic image similar to
the one used in [3, 13] (Fig. 1.(a)). Fig. 1.(b) shows the same
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(a) (b)

(c) (d)

Fig. 1. Experiment on a synthetic image. (a) Original im-
age. (b) Corrupted original image with Gaussian noise(0
mean, 0.02 variance). Results obtained by using (c) SVFMM
(MCR=10.18%), (d) the proposed method (MCR=2.33%).

image with added Gaussian noise (mean=0, variance=0.02).
We analysis the noise robustness and compare the segmenta-
tion result with SVFMM. Fig. 1.(c) and Fig. 1.(d) show the
segmentation results obtained by SVFMM and the proposed
method, respectively. Compared with these two methods, it
is easy to view that the proposed method obtains the best re-
sult in noise environment. To further examine its robustness
to noise, the evaluation of the proposed method within noisy
environment is presented. The results obtained with varying
levels of Gaussian noise are presented in Table. 1. As can be
seen, the proposed method has a lower MCR compared with
Gaussian Mixture Model (GMM) and SVFMM. The misclas-
sification ratio (MCR) [13] is used to measure the segmenta-
tion accuracy, which is computed by the ratio between num-
ber of misclassified pixels and total number of pixels.

In order to further test the accuracy and determine the ef-
ficiency of the proposed method in noise environment, we
do experiment on real world image. We use the probabilis-
tic Rand (PR) index [14] to evaluate the performance of the
proposed algorithm of the Berkeley database image. It con-
tains values in the range [0, 1], with values closer to 1 indicat-
ing a good result. Fig. 2.(a) shows a color image. We tried
to segment the image into three classes. The image in Fig.
2.(b) shows the segmentation result obtained by the proposed
method. The image shown in Fig. 2.(c) is obtained by cor-
rupting the original image in Fig. 2.(a) with Gaussian noise
(0 mean, 0.02 variance). Fig. 2.(d) presents the segmentation
result obtained by using the proposed method. For visual in-

(a) (b)

(c) (d)

Fig. 2. Experiment on a real world image. ((a) Original
image. (b) Segmentation result obtained by the proposed
method (PR=0.722). (c) Corrupted original image with Gaus-
sian noise (0 mean, 0.02 variance) and its three-class segmen-
tation by (d) Segmentation result obtained by the proposed
method (PR=0.669).

spection of the results, the proposed method also produces a
good segmentation result in a noisy environment.

5. CONCLUSION

In this paper, we presented a energy minimization-based mix-
ture model for image segmentation. The proposed method
considers both the energy of the data space and the energy of
the spatial space. The proposed model postulates that the un-
observed pixel labels generated by prior distributions are sim-
ilar if the pixels are close in geometry of the data distribution.
The kernel function is used to measure the geometry close-
ness of the pixels. We use the gradient descent algorithm to
estimate the parameters of the model and the posterior prob-
abilities. The proposed method has been tested on synthetic
and real world images. The experimental results show ex-
cellent performance of the proposed model in segmenting the
images compared to the GMM and SVFMM.
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