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ABSTRACT 

 
Fuzzy c-means (FCM) with spatial constraints has been 
considered as an effective algorithm for image segmentation. 
In this paper, we propose a new algorithm to incorporate the 
local spatial information with the consideration of mean 
template. Our algorithm is fully free of the empirically pre-
defined parameters that are used in other FCM methods to 
balance between robustness to noise and effectiveness of 
preserving the image sharpness and details. Furthermore, in 
our algorithm, the prior probability of an image pixel is 
influenced by the fuzzy memberships of pixels in its 
immediate neighborhood to incorporate the local spatial 
information and intensity information. Finally, we utilize the 
mean template instead of the traditional hidden Markov 
random field (HMRF) model for estimation of prior 
probability. Compared to HMRF, our method is simple, easy 
and fast to implement.  
 

Index Terms—Fuzzy C-Means, Image segmentation, 
Mean template, Spatial constraints 
 

1. INTRODUCTION 
 

Image segmentation is one of the most important and 
difficult problems in many applications, such as robot vision, 
object recognition and medical image processing. Although 
different methodologies [1-4] have been proposed for image 
segmentation, it remains a challenge due to overlapping 
intensities, low contrast of images, and noise perturbation. In 
the last decades, fuzzy segmentation methodologies, and 
especially the fuzzy c-means algorithms (FCM) [6], have been 
widely studied and successfully applied in image clustering 
and segmentation. Their fuzzy nature makes the clustering 
procedure able to retain more original image information than 
the crisp or hard clustering methodologies [5, 7].  

Although the FCM algorithm usually performs well with 
non-noise images, it is still weak in imaging noise, outliers 
and other imaging artifacts. This may be caused by two 
aspects: one is the usage of the non-robust, Euclidean distance 
function, and the other does not pertain to any information 
about spatial context. Several attempts have been made to 
compensate for these drawbacks of FCM. For example, in [8-
11], various more robust alternatives for the distance function 

of the FCM algorithm have been proposed. In [12-13], various 
FCM-type clustering schemes, incorporating spatial 
constraints into the fuzzy objective function, have been 
proposed. However, all the methods mentioned above have 
significant disadvantages such as limited robustness to outliers 
and high computational complexity. 

To overcome the limitation of lacking spatial information, a 
wide variety of approaches has been proposed to incorporate 
spatial information into the image. A common approach is the 
use of the Hidden Markov Random Field (HMRF) Model [14, 
15]. In the HMRF model, the spatial information in an image 
is encoded through the contextual constraints of neighboring 
pixels, which are characterized by conditional HMRF 
distributions. Parameter estimation in HMRF models usually 
relies on Maximum Likelihood (ML) or Bayesian methods. 
Besag [16] introduces the idea of the pseudo likelihood 
approximation when ML estimation is intractable.  

In this paper, we first use Kullback-Leibler (KL) 
divergence information to regularize the fuzzy objective 
function with the consideration of the spatial information 
simultaneously. Moreover, we add weighting for distant pixels 
in order to distinguish among the contributions of different 
pixels, as the weighted parameters decrease with increasing 
distance. In our model, the distance function is measured by 
multivariate Gaussian function instead of the traditional 
Euclidean distance (L2 norm) in the standard FCM algorithm. 
HMRF is a common way as the spatial constraints. However, 
the main drawback of HMRF models is that they are 
computationally expensive to implement, and require the 
additional parameter β to control the degree of image 
smoothness. The chosen parameter has to be both large 
enough to tolerate the noise, and small enough to preserve 
image sharpness and details. Thus, the parameter is noise 
dependent to some degree and selected generally based on 
experience. In our algorithm, the prior probability of an image 
pixel is influenced by the fuzzy membership of pixels in its 
immediate neighborhood with the help of a mean template. 
Different from the HMRF model, our model is fully free of 
the empirically adjusted parameter β.  
 

2. FUZZY C-MEANS ALGORITHM 
 
In the standard FCM algorithm [6, 17], the fuzzy objective 
function that needs to be minimized is given by 
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where yi, i=(1,2,…,N), denotes the data set in the D-
dimensional vector space, N is the total number of data points, 
K is the number of clusters, uij is the degree of membership of 
yi in the j-th cluster, m is the weighting exponent on each 
fuzzy membership function uij, μj is the prototype of the center 
of cluster j, and d(yi, μj) is a distance measure between point yi 
and cluster center μj, called distance function. The Euclidean 
distance is usually used in standard FCM. 

Ichihashi et al. [18] introduced another FCM variant, using 
a regularization to modify standard fuzzy objective function 
by KL information. Under this consideration, the modified 
fuzzy objective function becomes 
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where λ is the model’s degree of fuzziness of the fuzzy 
membership values and πj is the prior probability of the j-th 
cluster. 

More recently, Ahmed et al. [4] proposed another 
modification of the FCM, to allow the labeling of a pixel to be 
influenced by the labels in its immediate neighborhood, for 
image segmentation. The modified fuzzy objective function is 
defined as follows: 
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where ym represents the neighbor of yi, i is the neighborhood 

of the i-th pixel including the i-th pixel itself, and NR 
represents its cardinality. The parameter a is used to control 
the effect of the neighbor’s term. 

 
3. PROPOSED METHOD 

 
It is noticed that (3) is equivalent to the usage of mean 
template for distance function d. In this paper, we also apply 
mean template on prior probability πj to incorporate local 
spatial information and component information. To 
demonstrate our algorithm, we first combine (2) and (3), with 
some modification for consideration of spatial constraints, to 
generate a new objective function, 
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where the distance function d in (4) is different from that in (2) 
and (3), which is defined by the multivariate Gaussian 
distribution p as follows: 

  , log |i j i jd y p y   .                         (5) 

Here, θj represents the mean μj and covariance Σj of 
multivariate Gaussian distribution. Then, we have 
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In (4), i is the neighborhood of the i-th pixel, including the i-

th pixel. wm is the weighting to control the influence of the 
neighborhood pixels depending on their distance from the 
central pixel. Ri is the normalized factor, defined as 
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A simple choice of the weighted parameter wm in (4) is that 
wm=1 for all m-th pixels, and Ri equals the number of pixels in 
the neighborhood window. However, to incorporate the spatial 
information and pixel intensity value information, the strength 
of wm should decrease as the distance between pixel m and i 
increases. For this reason, we define wm as the function of Lmi, 
which is the spatial Euclidean distance between pixels m and i. 
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neighborhood window size 1

4
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Comparing (4) with (2) and (3), it can be seen that there are 
no pre-defined parameters a or λ in our model. Note that the 
prior probability πij in (4) represents the prior distribution of 
pixel yi belonging to class j, which satisfies the constraint 
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Traditional estimation of fuzzy membership is in a FCM way. 
However, this derivation ignores the relationship between the 
neighborhoods of image pixels, thus lacks of spatial 
information. One possible solution of this problem is the well-
known HMRF model. However, the HMRF model is too 
complex and time consuming. In this paper, we introduce 
another algorithm to apply a mean template on the 
membership function, given as follows  
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where i  is the neighborhood of the i-th pixel. β is the 

strength factor and can be set as 2, 3, 4…… for increasing the 
performance. Here, we set β=2. One possible choice of 

weighted parameter is  21/ 1m mw L  i . 

For parameter learning, let us first consider the derivation 
of the fuzzy membership function values. This can be 
obtained by minimizing the objective function J over u under 

the constraints 
1
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Taking the derivative of Ju with respect to uij and setting the 
result to zero, we have 
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Taking the first derivatives of Jmn with respect to means μj and 
the covariance matrices Σj and then setting them to zero, 
yields 
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For a deep understanding of our algorithm, we summarize the 
computation process of our algorithm as follows 
Algorithm: Parameter learning in our model 
Step 1. Use mean template for calculating the prior probability 

( )k
ij  given by (11). 

Step 2. Compute the fuzzy membership function ( 1)k
iju   using 

(12). 
Step 3. Compute the quantities  and  by (13) and 

(14) respectively.  

( 1)k
j
 ( 1)k

j


Step 4. Terminate the iterations if the object function 
converges; otherwise, increase the iteration (k=k+1) and repeat 
steps 1 through 4. 
 

4. EXPERIMENTAL RESULTS 
 
In this section, we experimentally evaluate our algorithm in a 
set of synthetic images and real images. We also evaluate 
FCM_S1 and FCM_S2 [5], FLICM [3], HMRF-FCM [19] and 
EGMM [20] for fair comparison. Our experiments have been 
developed in Matlab R2009b, and are executed on an Intel 
Pentium Dual-Core 2.2 GHZ CPU, 2G RAM.  
 

 
(a)                         (b)                          (c)                         (d) 

 
(e)                         (f)                           (g)                         (h) 

Fig. 1. (a) Original three-class image; (b) Corrupted by Gaussian noise (zero 
mean, 0.15 variance); (c) FCM_S1, MCR=17.50%; (d) FCM_S2, 
MCR=18.22%; (e) FLICM, MCR=15.46%; (f) HMRF-FCM, MCR=12.10%; 
(g) EGMM, MCR=8.87%; (h) Proposed method, MCR=2.92%. 
 

In the first experiment, a three-class synthetic image 
(246246, shown in Fig. 1(a)) is used to compare the 
performance of the proposed method with others. Fig. 1(b) 
shows the same image corrupted by Gaussian noise with zero 

mean and 0.15 variance. In order to evaluate the segmentation 
results, we employ the misclassification ratio (MCR) [15] in 
our experiments. The value of MCR is in the [0%-100%] 
range, where lower values indicate better segmentation 
performance. The segmentation results of the noised image 
(Fig. 1(b)) by FCM_S1, FCM_S2, FLICM, HMRF-FCM, 
EGMM and the proposed method are shown in Figs. 1(c)-(h). 
The class number is set to 3, based on previous experience. As 
we observe, FCM_S1 and FCM_S2 do not segment images 
well. Although FLICM, HMRF-FCM and EGMM can reduce 
the effect of noise to some extent, as [3, 19, 20] claim, they 
are still sensitive to heavy noise and misclassify some portions 
of pixels, as shown in Figs. 1(e)-(g). However, we observe 
that the proposed method yields outstanding segmentation 
results compared to the poor performance of their competitors, 
as seen in Fig. 1(h). The results obtained by different noise 
intensities are given in Table 1. As we observe, the proposed 
method obtains the best results compared to the other methods, 
and especially for heavy noised image segmentation. 
 

 
(a) 135069            (b) 12003             (c) 58060              (d) 55067 

 
(e) 353013            (f) 310007            (g) 61060              (h) 24063 

 
         (i) 239007              (j) 46076              (k) 15088               (l) 302003 

Fig. 2. Image segmentation results by proposed algorithm. 
 

In the second experiment, we evaluate the performance of 
the proposed method based on a subset of the Berkeley image 
dataset [21], which is comprised of a set of real-world color 
images along with segmentation maps provided by different 
individuals. We employ the Probabilistic Rand (PR) index to 
evaluate the performance of the proposed method, with the 
multiple ground truths available for each image within the 
dataset [22]. The PR index takes values between 0 and 1, with 
values closer to 0 (indicating an inferior segmentation result) 
and values closer to 1 (indicating a better result). 

Fig. 2 shows the segmentation results for original Berkeley 
images of various methods. For fair comparison, we also 
evaluate the performance of FCM_S1, FCM_S2, FLICM, 
HMRF-FCM and EGMM in addition to our methods. Table 2 
presents the average PR values for all methods. Compared to 
other methods, the proposed algorithm yields the best 
segmentation results with the highest PR values. 

In the last experiment, we try to segment the 
multidimensional RGB color image into three classes: the blue 
sky, the red roof and the white wall. The original image 
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(481321) shown in Fig. 3(a) is corrupted by heavy Gaussian 
noise, with mean=0 and covariance=0.15. The noised image is 
shown in Fig. 3(b), and the segmentation results of FCM_S1, 
FCM_S2, FLICM, HMRF-FCM, EGMM and our proposed 
method are shown in Figs. 3(c)-(h), respectively. The 
accuracy of segmentation for FCM_S1 and FCM_S2 is quite 
poor. FLICM and HMRF-FCM obtain better results, but they 
are still sensitive to heavy noise. Although EGMM 
demonstrates better segmentation performance, it still 
misclassifies some portions of pixels at the edge region 
between the sky and the roof, as well as the edge region 
between the sky and the wall. The accuracy of the 
segmentation results from the proposed method, as shown in 
Fig. 3(h), is better than that of other methods, obtaining the 
highest PR values. We also evaluate the computation time for 
all methods in the previous experiment. The computation time 
t of the different methods is also presented in Fig. 3. It is 
noted that the computation of our methods is much faster than 
that of other methods except for FCM_S methods. Compared 
to other methods, our models can be calculated more quickly 
and achieve the best segmentation results. 

 
Table 1. The misclassification ratio (MCR %) of synthetic image with additive 

Gaussian noise for different methods  
Methods var=0.06 var=0.09 var=0.12 var=0.15
FCM_S1 4.18 7.69 13.18 17.50 
FCM_S2 3.51 8.39 13.38 18.22 
FLICM 3.02 7.24 10.13 15.46 

HMRF-FCM 2.96 4.69 10.44 12.10 
EGMM 1.63 2.86 4.90 8.87 

Proposed 1.46 1.98 2.41 2.92 

 
5. CONCLUSION 

 
In this paper, we propose a new effective fuzzy clustering 
approach for image segmentation. Gaussian distance function 
and spatial constraints are incorporated into the fuzzy 
objective function by dealing with FCM in a Bayesian way. 
Moreover, we add weighting for distant pixels in order to 
distinguish among the contributions of different pixels, as the 
weighted parameters decrease with increasing distance. In our 
algorithm, the prior probability of an image pixel is influenced 
by the fuzzy membership of pixels in its immediate 

neighborhood with the help of a mean template. Different 
from the HMRF model, our model is fully free of any 
empirically adjusted parameters and has less computation 
complexity. Compared with state-of-the-art technologies 
based on FCM, GMM, HMRF and their hybrid models, the 
experimental results demonstrate the improved robustness and 
effectiveness of our proposed algorithm. 
 

 
(a)                         (b)                          (c)                          (d) 

 
(e)                         (f)                          (g)                          (h) 

Fig. 3. RGB Image segmentation with image noise. (a) Original image; (b) 
Noised image; (c) FCM_S1, PR=0.0.7587, t=4.23s; (d) FCM_S2, 
PR=0.7523, t=4.18s; (e) FLICM, PR=0.7794, t=28.18s; (f) HMRF-FCM, 
PR=0.8426, t=167.53s; (g) EGMM, PR=0.8461, t=66.61s; (h) Proposed 
method, PR=0.8545, t=16.97s. 
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7. RELATION TO PRIOR WORK 
 
Our work has focused on the image segmentation by fuzzy 
clustering approach based on [3, 5, 19]. The major special 
characteristics of our model are summarized below:  
1. Use mean template instead of HMRF to incorporate more 
local spatial information. 
2. Use multivariate Gaussian distribution instead of traditional 
Euclidean distance (L2 norm) in standard FCM algorithm. 
3. Is free of parameter selection. 
4. Decrease the influence of the neighborhood pixels with the 
increasing of their distance from the central pixel. 

 
 

Table 2. Comparison of different methods for Berkeley image dataset, Probabilistic Rand (PR) Index. 
Image # Class FCM_S1 FCM_S2 FLICM HMRF-FCM EGMM Proposed 
135069 2 0.981 0.981 0.983 0.984 0.985 0.972 
124084 3 0.510 0.506 0.510 0.526 0.558 0.781 
69020 3 0.535 0.534 0.552 0.559 0.605 0.676 
12003 3 0.608 0.605 0.614 0.618 0.623 0.732 
58060 3 0.573 0.563 0.584 0.615 0.622 0.645 
239007 3 0.633 0.634 0.645 0.668 0.671 0.687 
46076 4 0.715 0.715 0.725 0.826 0.828 0.845 
55067 4 0.879 0.869 0.879 0.888 0.891 0.890 

353013+0.01 noise 3 0.633 0.636 0.663 0.741 0.757 0.783 
310007+0.01 noise 7 0.664 0.661 0.708 0.677 0.733 0.738 
61060+0.01 noise 3 0.617 0.627 0.625 0.575 0.639 0.698 
15088+0.02 noise 2 0.656 0.654 0.717 0.855 0.851 0.862 
24063+0.02 noise 3 0.819 0.817 0.826 0.834 0.831 0.839 
374067+0.02 noise 4 0.711 0.715 0.729 0.744 0.710 0.782 
302003+0.02 noise 3 0.705 0.705 0.713 0.715 0.708 0.717 

Mean  0.683 0.681 0.698 0.722 0.734 0.776 
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