
IMAGE SEGMENTATION BY A ROBUST MODIFIED GAUSSIAN MIXTURE MODEL 
 

Hui Zhang1,2, Q. M. Jonathan Wu2, Thanh Minh Nguyen2 
 

1School of Computer & Software, Nanjing University of Information Science & Technology, China 
2Department of Electrical and Computer Engineering, University of Windsor, Canada 

 
ABSTRACT 

 
The Gaussian Mixture Model (GMM) with a spatial 
constraint, e.g. a Hidden Markov Random Field (HMRF), 
has been proven effective for image segmentation. However, 
the determination of parameter β in the HMRF model is, in 
fact, noise dependent to some degree. In this paper, we 
propose a simple and effective algorithm to make the 
traditional Gaussian Mixture Model more robust to noise, 
with consideration of the relationship between the local 
spatial information and the pixel intensity value information. 
The conditional probability of an image pixel is influenced 
by the probabilities of pixels in its immediate neighborhood 
to incorporate the spatial and intensity information. In this 
case, the parameter β can be assigned to a small value to 
preserve image sharpness and detail in non-noise images. At 
the same time, the neighborhood window is used to tolerate 
the noise for heavy-noised images. Thus, the parameter β is 
independent of image noise degree in our model. Finally, 
our algorithm is not limited to GMM–it is general enough so 
that it can be applied to other distributions based on the 
construction of the Finite Mixture Model (FMM) technique. 
 

1. INTRODUCTION 
 

Image segmentation is one of the most important and 
difficult problems in many applications, such as robot vision, 
object recognition, and medical image processing. Although 
different methodologies [1-6] have been proposed for image 
segmentation, it remains a challenge due to overlapping 
intensities, low contrast of images, and noise perturbation. 
One of the most widely used clustering models for image 
segmentation is the well-known Gaussian Mixture Model 
(GMM) [7-10]. The main advantage of the standard GMM 
is that it is easy to implement and the small number of 
parameters can be efficiently estimated by adopting the 
Expectation Maximization (EM) algorithm. However, as a 
histogram-based model, the GMM assumes that each pixel 
in an image is independent of its neighbors and does not 
take into account spatial dependencies. Thus, the 
performance of the GMM is sensitive to noise and image 
contrast levels. To overcome this shortcoming, a wide 
variety of approaches have been proposed to incorporate 
spatial information into the image. A common approach is 

the use of the Hidden MRF (HMRF) Model [11-13]. In the 
HMRF model, the spatial information in an image is 
encoded through the contextual constraints of neighboring 
pixels, which are characterized by conditional MRF 
distributions. Parameter estimation in HMRF models 
usually relies on Maximum Likelihood (ML) or Bayesian 
methods [14, 15]. Based on this well-known pseudo 
likelihood approximation [16], various HMRF model 
estimation approaches have been proposed [17-23].  

However, HMRF resorts to the parameter β to control the 
degree of image smoothness. The chosen parameter has to 
be both large enough to tolerate the noise, and small enough 
to preserve image sharpness and detail. Thus, the parameter 
is selected generally based on experience. In this paper, we 
propose a robust Modified Gaussian Mixture Model 
(MGMM) to incorporate local spatial information and pixel 
intensity value information. The conditional probability of 
an image pixel is influenced by the probabilities of pixels in 
its immediate neighborhood. For spatial information, we 
add weighting for distant pixels in order to distinguish 
among the contributions of different pixels, as the weighted 
parameters decrease with increasing distance. In our model, 
the parameter β can be assigned a small value to preserve 
image sharpness and detail in non-noise images. At the 
same time, the conditional probability neighborhood 
window is used to tolerate the noise for heavy-noised 
images. The performance of our proposed approach, 
compared with state-of-the-art technology, demonstrates its 
improved robustness and effectiveness. 
 

2. FINITE MIXTURE MODEL 
 

Let us first consider two letters: Q={1,2,…,K} and 
L={1,2,…,D}. Let S be a finite index set, S={1,2,…,N}. We 
shall refer to set S as the set of sites or locations. Let X and 
Y be two random fields, their state space  and  are 

indexed by the supposed set of sites S (every site i S ), 

given by  :i i ix x Q  , and  :i i iy y L  . 

Their product space 
1

N

i
i

x


  and 
1

N

i
i

y


 shall be 

denoted as the space of the configurations of the state values 
of the considered site set, x=(xi) and y=(yi). 
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For image segmentation application, an image consisting 
of N pixels is segmented into K classes. yi denotes the 
observation (intensity value) at the i-th pixel of an image 
and xi denotes the corresponding class label of the i-th pixel. 
For every  and , the probability j Q i S

   ip x j j

i j

                                        

is the prior distribution of the pixel yi , belonging to the class 
xi. yi follows a conditional probability distribution p(yi |θj), 
in which θj is the set of parameters. Specific to the GMM, 
the conditional probability p(yi|θj) is selected as a Gaussian 
distribution. Under the independent assumption, the FMM 
can be calculated as  

  
1

| , |
K

i j
j

p y p y 


 π θ .                            (1) 

Although FMM is widely used for its simplicity and 
effectiveness as a model [1], it only describes the data 
statistically; no spatial information about the data is utilized. 
In other words, it does not take into account the spatial 
correlation between the neighboring pixels in the decision 
process. Thus, HMRF is selected as a useful tool in order to 
overcome the problems with the FMM, and to reduce the 
sensitivity of the segmentation result with respect to noise. 

 
3. PROPOSED METHOD 

 
Let yi, with dimension d, i=(1,2,…,N), denote the intensity 
value at the i-th pixel of an image and j (j=1,2,…,K) denote 
the corresponding class label of the i-th pixel. In HMRF, the 
neighboring labels influence the class label of a pixel. 
Inspired by this idea, we calculate the conditional 
probability of the i-th pixel by its neighborhood 
probabilities. The modified Gaussian Mixture Model 
(MGMM) is defined as 
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where i is the neighborhood of the i-th pixel; including 

the i-th pixel, this is called the conditional probability 

window (CPW). The probability  |m jp y   is the Gaussian 

distribution and Ri is the normalized factor, defined as 

i

i
m

R


 


mw .                                          (3) 

Our model degrades to the standard Gaussian Mixture 
Model when CPW=11; thus, the standard GMM can be 
considered as a special case of our model. A simple choice 
of wm is that wm=1 for all m-th pixels, and Ri equals the 
number of pixels in the CPW. However, to incorporate the 
spatial information and pixel intensity value information, 
the strength of wm should decrease as the distance between 
pixel m and i increases. For this reason, we define wm as the 
function of dmi, which is the spatial Euclidean distance 
between pixels m and i. 
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size of CPW 1

4
 
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The prior probability πij in (2) represents the prior 
distribution of pixel yi belonging to class j, which satisfies 
the constraint 

0 1ij   and .                           (6) 
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With the intrinsic relationship between the prior probability 
πij and the posterior probability, the prior probability can be 
expressed as  
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where zij is the posterior probability  and  |ip x j y

{ }i i i    is the neighborhood of the i-th pixel, called 

the posterior probability window (PPW). It is noted that (7) 
is very similar to the HMRF, except with respect to the 
PPW sizes. For a one-dimensional chain, the Markov 
property means that the probabilistic behavior of the chain 
at some time i, given knowledge of its complete past, 
depends only on its state in the immediate past i−1 [24]. For 
a 2-D image, the definition of neighbors (i−1 and i+1) 
extends to horizontal, vertical, and diagonal pixels, which 
becomes a 33 square window. Thus, HMRF has to select 
only the 33 square window due to its Markov property. In 
our model, 33, 55, 77, etc. square windows can be used, 
and HMRF is a special case of our model when PPW=33.  

In general, for heavier-noised images, a larger PPW can 
be used to obtain better segmentation results. Moreover, 
parameter β in (7) is set to a small value to preserve image 
sharpness and detail, and the CPW is used to simultaneously 
tolerate heavy noise. The details to demonstrate the 
relationship between CPW, PPW, and parameter β are 
illustrated in the experimental results presented in Section 4. 

We then apply the EM algorithm for parameter learning 
in our model. First, according to [2], the complete-data log 
likelihood can be written as 
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In E-step, the posterior probability can be calculated as 
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The M-step evaluates the mean and covariance as follows 
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For a deep understanding of our algorithm, we summarize 
the computation process of our MGMM as follows 
Algorithm: The EM Algorithm for MGMM 
Step 1. Initialize the algorithm with the k-means method to 
obtain initial values; set CPW and PPW size; assign value 
of parameter β. 
Step 2. In E-step, compute the prior probability ( )k

ij  using 

(7) and calculate the posterior probability  using (9). ( )k
ijz

Step 3. Compute the quantities  and  using (10) 

and (11) according to the M-step.  

( 1)k
j
 ( 1)k

j


Step 4. Terminate the iterations if the EM algorithm 
converges; otherwise, increase the iteration (k=k+1) and 
repeat steps 2-4. 
 

4. EXPERIMENTAL RESULTS 
 

In this section, we experimentally evaluate MGMM in a 
set of synthetic images and real images. We also evaluate 
GMM [2], FLICM [3] and HMRF-FCM [10] for 
comparison. The source codes for the FLICM and HMRF-
FCM algorithms can be downloaded from the authors’ 
websites [25-26]. 

In the first experiment, a three-class synthetic image 
(128128, shown in Fig. 1 (a)) is used to compare the 
performance of the proposed method with others. Fig. 1 (b) 
shows the same image corrupted by Gaussian noise with 
zero mean and 0.25 variance. In order to evaluate the 
segmentation results, we employ the misclassification ratio 
(MCR) [13] in our experiments. The value of MCR is in the 
[0%-100%] range, where lower values indicate better 
segmentation performance. The segmentation results of the 
noised image (Fig. 1(b)) by GMM, FLICM, HMRF-FCM, 
MGMM are shown in Fig. 1(c)-(f). We set PPW=55, 
CPW=33, and parameter β=2.5 for MGMM. The class 
number is set to 3. As we observe, GMM does not segment 
images well. Although FLICM and HMRF-FCM can reduce 
the effect of noise to some extent, as [3, 10] claim, they are 
still sensitive to heavy noise and misclassify some portions 
of pixels, as shown in Fig. 1(d)-(e). However, we observe 
that the proposed MGMM yields outstanding segmentation 
results compared to the poor performance of their 
competitors, as seen in Fig. 1(f). The results obtained by 
different noise intensities are given in Table 1. As we 

observe, the proposed MGMM reaches the lowest MCR 
compared to the other methods. 

 

      
(a)               (b)                (c)                (d)              (e)                (f) 

Fig. 1. (a) Original three-class image (128128 size); (b) Corrupted by 
Gaussian noise (zero mean, 0.25 variance); (c) GMM, MCR=51.14%; (d) 
FLICM, MCR=8.47%; (e) HMRF-FCM, MCR=8.72%; (f) MGMM, 
MCR=3.37%. 
 

Table 1. The misclassification ratio (MCR %) of synthetic image with 
additive Gaussian noise for different methods  

Methods var=0.1 var=0.15 var=0.2 var=0.25
GMM 39.31 44.88 48.73 51.14 

FLICM 4.14 5.23 7.14 8.47 
HMRF-FCM 3.03 6.62 7.74 8.72 

MGMM 1.44 2.08 2.72 3.37 
 

      
(a)               (b)                (c)                (d)              (e)                (f) 

Fig. 2. Methods for different parameter β values. The MGMM is evaluated 
without CPW affect. (a) HMRF-FCM, β=5, MCR=43.62%; (b) HMRF-
FCM, β=10, MCR=4.68%; (c) HMRF-FCM, β=15, MCR=5.27%. (d) 
MGMM, β=5, MCR=38.89%; (e) MGMM, β=10, MCR=4.86%; (f) 
MGMM, β=15, MCR=6.82%. 
 

  
(a)                (b)                         

Fig. 3. MGMM with PPW=55 and CPW=33 for different parameter β 
values. (a) MGMM, 7%; (b) MGMM, β=3, MCR=2.86%. β=2.5, MCR=3.3

                   
For deep investigation of the influence by parameter β, 

CPW and PPW, we re-evaluate the performance of different 
methods for heavy-noised image segmentation (shown in 
Fig. 1(b), corrupted by Gaussian noise with zero mean and 
0.25 variance). For fair evaluation of parameter β in HMRF 
and in our models, we adopt the implementation in [1] 
instead of mean-field-like algorithm for the prior probability 
approximation of the HMRF-FCM method. Image 
segmentation by HMRF-FCM with different parameter β 
values is shown in Fig. 2(a)-(c). It is observed that the small 
β value (β=5 in Fig. 2(a)) works poorly for heavy-noised 
images and the large β values (β=10 and 15 in Fig. 2(b)-(c)) 
are available for image segmentation. This result is expected, 
and has been proven by previous research: parameter β has 
to be large enough to tolerate the noise. In this case, β is 10 
to strike a good balance between robustness and noise, and 
to be effective in preserving the details of the image. To 
evaluate the impact of PPW, we use MGMM with 
PPW=55, without considering CPW (CPW=11), by 
different values of parameter β. The segmentation results 
are shown in Fig. 2(d)-(f). Comparing Fig. 2(b)-(c) with Fig. 
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2(d)-(f), we can observe that a larger PPW can improve the 
result, but not significantly. However, without the help of 
CPW, the segmentation result in Fig. 2(d) is still pooled for 
the small parameter value β=5. Finally, we evaluate the 
proposed MGMM with PPW=55 and CPW=33 by 
different values of parameter β. The segmentation results 
are shown in Fig. 3(a)-(b). It can be seen in Fig. 3 that CPW 
improves significantly with the small parameters (β=2.5 and 
β=3) in MGMM to preserve more image sharpness and 
detail. From Fig. 2-3, it can be seen that the proposed model 
yields a nearly perfect result, outperforming the traditional 
HMRF method with the lowest MCR. 

We then evaluate the performance of the proposed 
MGMM based on a subset of the Berkeley image dataset 
[27], which is comprised of a set of real-world color images 
along with segmentation maps provided by different 
individuals. We employ the Probabilistic Rand (PR) index 
[28] to evaluate the performance of the proposed method, 
with the multiple ground truths available for each image 
within the dataset. The PR index takes values between 0 and 
1, with values closer to 0 (indicating an inferior 
segmentation result) and values closer to 1 (indicating a 
better result). 

 

 
(a) 22090              (b) 24063               (c) 78019            (d) 105053 

 
(e) 108073            (f) 124084              (g) 135069           (h) 253036 

 
         (i) 46076              (j) 302003              (k) 61086               (l) 106025 

Fig. 4. Berkeley Image segmentation results by MGMM. 

 
Fig. 4 shows the image segmentation results of Berkeley 

image data. Table 2 presents the average PR values for all 
methods. Compared to other methods, the proposed 
MGMM yields the best segmentation results with the 
highest PR values. We also evaluate the computation time 
for all methods in the previous experiment. The average 
computation time of the different methods is presented on 
the last line of Table 2. It is noted that the computation of 
our MGMM is slower than GMM, but is still much faster 
than other methods. Compared to other methods, our models 

 
Table 2. Comparison of d

Probabilistic Rand (PR) Index. 

can be calculated more quickly and achieve the best 
segmentation results. 

ifferent methods for Berkeley image dataset, 

Image # Class GMM FLICM HMRF-
FCM 

MGMM

108073 4 0.5792 0.5824 0.5855 0.6305
124084 4 0.6971 0.6 0.7203 0.7310
135069 2 0.979 0.9834 0.9873 0.9733
302003 3 0.7018 0.  7172 0.7169 0.7021
105053 3 0.5389 0.51 0.5546 0.6234
22090 4 0.7644 0.7675 0.7777 0.8157
46076 6 0.8226 0  .8381 0.8602 0.8984
61086 5 0.6880 0.7213 0.7220 0.7397

106025 4 0.8198 0.7833 0.8241 0.8528
253036 4 0.6856 0.704 0.7181 0.7257
78019 7 0.8153 0.8162 0.8231 0.8378
24063 4 0.7790 0.8139 0.8559 0.8676

Mean 0.7392 0.7364 0.7621 0.7832
C tion tiomputa me 13.96s 49.51s 113.09s 24.80s 

 
5. CONCLUSION 

In this paper, we pr effective algorithm 
 make the traditional Gaussian Mixture Model more 
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7. RELATION TO PRIOR WORK 
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Though the basic concept of adding spatial information to 
GMM is not new [2, 10], the originality of the proposed 
algorithm is encoding local spatial information by using a 
conditional probability window. 
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