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ABSTRACT

We propose a new graph-based approach for performing a multil-
abel, interactive image segmentation using the principle of random
walks. Using the random walk principle, given a set of user-defined
(or prelabeled) pixels as labels, one can analytically calculate the
probability of walking from each unlabeled pixel to each labeled
pixel, thereby defining a vector of probabilities for each unlabeled
pixel. By efficiently combining this vector of probabilities obtained
for each unlabeled pixel, they can be assigned to one of the labels
using the watershed algorithm to obtain an image segmentation. We
present quantitative and qualitative results, comparing our new al-
gorithm with the original random walker image segmentation algo-
rithm.

Index Terms— Image segmentation, graph theory, random
walks, combinatorial Dirichlet problem, watersheds.

1. INTRODUCTION

Image segmentation is a very important task in many computer vi-
sion and image processing applications. The goal of segmentation
is to simplify and/or group the image into various homogeneous re-
gions that are more meaningful and easier to analyze. Segmenta-
tion is a widely researched topic and there have been numerous seg-
mentation algorithms that have been proposed in the literature– e.g.,
thresholding methods [1], clustering methods [2], edge-based meth-
ods [3, 4], region growing methods [5], region splitting and merging
methods [6], partial differential equation (PDE) based methods [7]
and graph based methods [8–14]. Image segmentation algorithms
can be broadly classified into two main categories: automated seg-
mentation and interactive segmentation. While automated segmen-
tation approaches have looked at partitioning the entire image into
multiple homogeneous segments, interactive methods implicitly de-
fine the segmentation problem relative to a particular task of object
localization and categorization. This paper addresses a graph-based
segmentation approach based on the principle of random walks and
thus we limit our review to only graph-based segmentation algo-
rithms.

An interactive approach to image segmentation requires user
guidance of the segmentation algorithm to define desired content to
be extracted. They typically operate under one of two paradigms
for guidance: 1) specification of pieces of boundary of the desired
object to be segmented or a nearby complete boundary either in-
side or outside the objects that evolves to the desired object bound-
ary [7], [8], and [11]; 2) Specification of a small set of pixels within
the object belonging to it and a set of pixels for the background [13],
[14]. Mortensen et al. [8] proposed the intelligent scissors algorithm,
which follows the first paradigm for guidance. It uses Dijkstra’s al-
gorithm to compute the shortest path between the user guided points,

and this path is treated as the object boundary. This algorithm is fast
and works well when the object to be segmented has a high contrast
compared to its surroundings, but performs poorly when the contrast
is low and in the presence of noise. There exists a large family of
active contours and level-set methods that have been developed for
image segmentation [7]. These methods follow the first paradigm
for guidance, i.e., a nearby complete boundary is initially specified
either inside or outside the object, which then evolves the boundary
to a local energy minimum. This usually requires specifying many
different terms in the energy functional. These methods suffer from
weighting the various terms in the energy functional and also, the
initialization that the user provides needs to be close enough to the
true boundary of the object to be segmented or else it will lead to
errors in segmentation.

The well known graph-cuts image segmentation technique was
originally devised by Boykov et al. [9], [10], which follows the
second paradigm mentioned above for user guidance, by labeling
a few nodes with distinct labels. The algorithm represents the im-
age as a graph and performs a max-flow/min-cut analysis to find the
minimum-weight cut between the various labels. Since the algorithm
returns the smallest cut separating the labels, it will often return the
cut that minimally separates the labels from the rest of the graph,
if a small number of labels are used. Additionally, the multi-way
graph-cuts problem is NP-hard, requiring the use of a good heuristic
to obtain a decent solution. The graph-cuts algorithm has been ex-
tended in many different directions, including addressing the issues
of speed and processing of color images. One popular extension is
the lazy snapping technique proposed by Li et al. [12], which uses
an initial watershed approach to reduce the number of nodes to be
classified, thereby increasing the speed. Another popular extension
is the grabcut technique developed by Rother et al. [11], which uses
a color model to prevent the need for a large number of labels as a
user guidance to attain an optimal multi-way cut. Since these im-
provements make use of the attributes of the original graph-cuts al-
gorithm, we can expect to associate them with the same difficulties
as that of the graph-cuts algorithm. Grady [13] proposed a random
walker approach to interactive image segmentation formulated on a
weighted graph, where the unlabeled pixels are assigned the label of
the node to which it is most likely to send a random walker. This
algorithm has shown to perform well on different types of images,
but is strongly influenced by the placement of the labels within the
image.

We propose a new approach for interactive image segmentation
along the lines of the random walker algorithm. We notice from the
random walker algorithm presented by Grady [13] that, given a num-
ber K of user defined (or prelabeled) pixels as labels, we can find
the probability that a random walker starting at each unlabeled pixel
reaches each of these K labels. Unlike the original random walker
algorithm, we combine the K-tuple vector of probabilities obtained
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for each unlabeled pixel and segment the resulting image produced
using the watershed algorithm. We describe our algorithm is detail
and present both quantitative and qualitative results comparing it to
the random walker algorithm in the following sections of this paper.

2. METHODS

The random walker algorithm, which involves placing random walk-
ers at each unlabeled pixel and noting which labeled pixels they first
arrive at is not practical due to the computation involved. It has
been previously established [15], [13] that the probability a random
walker first reaches a labeled pixel exactly equals the solution to the
combinatorial Dirichlet problem with boundary conditions at the lo-
cations of the labeled pixels and labeled pixel in question fixed to
unity while others are set to zero. Since solving the combinatorial
Dirichlet problem is computationally reasonable, we use this combi-
natorial method to analytically compute the desired random walker
probabilities.

A graph consists of a pair G = (V,E) with vertices (nodes)
v ∈ V and edges e ∈ E ⊆ V ×V . An edge e, spanning two vertices,
vi and vj , is denoted by eij . A weighted graph assigns a value to
each edge called a weight. The weight of an edge eij is denoted by
w(eij) or simply wij . The degree of a vertex di =

∑

w(eij) for all
edges eij incident on vi. In order to interpret wij as the bias affecting
a random walker’s choice, we require that wij > 0. We also assume
that our graph is undirected and connected. To represent the image
structure in terms of random walker biases, we define a Gaussian
weighting function given by

wij = exp
{

−β(gi − gj)
2
}

(1)

where gi is the image intensity at pixel i. The value of β is the only
free parameter in this algorithm.

2.1. Combinatorial Dirichlet problem

As mentioned earlier, placing a random walker at every unlabeled
pixel to calculate the probability by noting when they first arrive at a
particular label is computationally impractical. Established connec-
tions between random walks and potential theory provide us with
a simple, convinient method for analytically computing the desired
probabilities. The Dirichlet problem has the same solution as the
desired random walker probabilities [15], [13] and so we solve this
problem to find the random walker probabilites.The Dirichlet inte-
gral may be defined as

D [q] =
1

2

∫

Ω

| ∇q |2 dΩ, (2)

for a field q and region Ω. A harmonic function is a function that
satisfies the Laplace equation ∇2q = 0. The problem of finding a
harmonic function subject to its boundary values is called the Dirich-
let problem. We define a combinatorial Laplacian matrix L whose
elements Lij for vertices vi and vj are defined as

Lij =







di if i = j,

−wij if vi and vj are incident nodes,
0 otherwise,

We also define an m× n edge-node incidence matrix A whose ele-
ments Aeijvk for each vertex vk and edge eij are defined as

Aeijvk =







+1 if i = k,

−1 if j = k,

0 otherwise,

The matrix A acts as a combinatorial gradient operator and the ma-
trix A⊤ as a combinatorial divergence. The isotropic combinatorial
Laplacian is given by L = A⊤A. We define the m × m constitu-
tive matrix C as the diagonal matrix with the weights of each edge
along the diagonal. The constitutive matrix may be interpreted as
representing a metric, in the sense that it defines a weighted inner
product on the vector space of functions defined on the edge set. In
this sense, the combinatorial Laplacian generalizes to the combinato-
rial Laplace-Beltrami operator via L = A⊤CA. The combinatorial
formulation of the Dirichlet integral is then given by

D[x] =
1

2
(Ax)⊤C(Ax) =

1

2
x
⊤
Lx =

1

2

∑

eij

wij (xi − xj)
2 (3)

If we partition the vertices into two sets, Vm representing the prela-
beled nodes or user defined labels and Vu representing the unlabeled
nodes, then Vm ∪ Vu = V and Vm ∩ Vu = ∅. We can decompose
(3) as

D[xU ] =
1

2

[

xT
M xT

U

]

[

LM B

BT LU

] [

xM

xU

]

=
1

2

(

x
T
MLMxM + 2xT

UB
T
xM + x

T
ULUxU

)

(4)

where xM and xU correspond to the probabilities of the labeled and
unlabeled pixels, respectively. For each unlabeled pixel

vui
∈ Vu, X =

[

x
j
u, 0 < j ≤ K

]

⊤

where xj
u is the probability that random walker, starting at vui

will
first reach the jth labeled pixel, vmj

∈ Vm, and K is the total num-
ber of labels the user specifies. For each labeled pixel

vmi
∈ Vm, M =

[

δ
j
i , 0 < j ≤ K

]

⊤

Differentiating D[xU ] with respect to xU and finding critical points
yields

LUxU = −B
⊤
xM . (5)

Equation (5) represents a system of linear equations with |Vu| un-
knowns. The solution to the combinatorial Dirichlet problem for the
label j may then be found by solving

LUx
j
u = −B

⊤
x
j
m (6)

for one label or

LUX = −B
⊤
M (7)

for all labels, where X has K columns taken by each xu and M has
columns taken by each xm. Since the probabilities at any node will
sum to unity, i.e.

∑

j

x
j
u = 1 ∀ vui

∈ Vu (8)

only K − 1 sparse linear systems need to be solved, where K is the
total number of labels.
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(d) (e) (f)
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Fig. 1: Example segmentations using the foreground (yellow) and background (green) seeds. Top Row: random noisy medical image,
Middle Row: an image from the Berkeley segmentation dataset. Bottom Row: an image from the USC SIPI image database. The resultant
segmentation boundaries are overlaid onto the original image in red color.

2.2. Combining probabilities and watershed

Once we obtain the K-tuple vector of probabilities for each unla-
beled pixel, we combine this vector of probabilities into one value
by taking the product of all the probabilities in the vector, in order to

obtain a resultant image R:

R =
∏

j

x
j
u (9)

The resultant image R will have maximum values in the areas where
the probabilities xj

u are equal for every 0 < j ≤ K, i.e., when an
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unlabeled pixel has equal probability to reach any of the K labels.
Since the probability of an unlabeled pixel to first reach any labeled
pixel decreases as we move away from this labeled pixel, we see a lo-
cal ridge formation around each labeled pixel in the resultant image
generated by (9). We grow the labeled pixel regions in all directions
until they reach their corresponding ridge locations in all directions
in the image R, thereby extending the original labeled pixel region
size fed by the user, to a larger size. Finally, we invert this image
R and perform a marker-controlled watershed transform on this in-
verted image, where the labeled pixel regions act as markers. This
leads to an improved image segmentation with more accurate delin-
eations between the objects boundaries.

3. EXPERIMENTS AND RESULTS

To test and evaluate the performance of the proposed algorithm
in comparison with the original random walker segmentation al-
gorithm, we made use of images from the Berkeley segmentation
dataset [16] and the USC SIPI image database.

3.1. Quantitative results

Fig. 1 shows example segmentation results for the proposed method
and the random walker segmentation method on the “x-ray image",“
men image", and “ariel image" in the top, middle and bottom rows,
respectively. We show the results for both gray-scale and color im-
ages. The value of the one free parameter, β in (1), was kept constant
for all the images and set to β = 100 for both the methods, despite
the different characteristics of the images. The “x-ray image" shown
on the top row in Fig. 1 is a noisy image, and a visual comparison
of the segmentation boundaries which are overlaid onto the original
image shown in red color in Figs. 1b&c clearly indicates that our
method is more robust to noise in comparison to the original ran-
dom walker algorithm. A multilabel segmentation is performed for
the “men image" shown on the middle row in Fig. 1. We observe
from Fig. 1e that the random walker segmentation method gets con-
fused and produces an erroneous result due to the color similarities
between the object and the background shown on the top right hand
side of the image, whereas our proposed technique performs well
as shown in Fig. 1f. Finally, from the “ariel image" shown in the
bottom row of Fig. 1 we can see how the placement of the label af-
fects the result of the random walker algorithm but not our proposed
technique. The isthmus which belongs to the land region has been
segmented as a part of the water region by the random walker seg-
mentation method, where as our proposed method is able to identify
that it is a land region and has segmented it correctly.

3.2. Qualitative results

In order to obtain an objective measure of performance for the two
segmentation methods under comparison here, we validated the re-
sults of the three images shown in Fig. 1 using the Dice evalua-
tion [6] based on the mutual overlap between the supervised seg-
mentation methods and manual segmentation. The manual segmen-
tations of the “men image" an “ariel image" are known to us since
they belong to the Berkeley segmentation dataset and the USC SIPI
image database, respectively. We carefully performed manual seg-
mentation for the “x-ray image" for validation. The Dice perfor-
mance metric is given by

O =
#(R1 ∩R2)

# (R1) + # (R2)
(10)

Table 1: DICE EVALUATION OF PERFORMANCE OF THE SEG-
MENTATION ALGORITHMS

x-ray
image

men
image

ariel
image

Our Method 0.965 0.903 0.916

RW Algorithm 0.868 0.812 0.804

where R1 and R2 are the automatically segmented region and the
manually segmented region, respectively. Here #(·) represents the
number of pixels in the region. Table 1 shows the segmentation ac-
curacy as a percentage for the three images. We observe from Table
1 that our proposed algorithm produces higher segmentation accu-
racy as compared to the random walker segmentation algorithm for
all three images.

4. CONCLUSIONS

Due to the varying imaging conditions and complexity of typical
images, fully automated segmentation methods are not always very
reliable. Thus, there is a need for a user-interactive image segmen-
tation method, especially in the medical field where the pathologist
or radiologist may want to participate in the image segmentation.
The work presented in this paper has focused on the formulation
of a new graph theoretic image segmentation method —“random
walker watershed" segmentation—which works on the principle of
random walks. The random walker segmentation approach proposed
by Grady [13] also focuses on the principle of random walks but dif-
fers from our approach in the sense that the final label given to an un-
labeled pixel is the value that maximizes the vector of probabilities
of the unlabeled pixel, whereas our approach combines these prob-
abilities and generates a resulting image which is then segmented
using the watershed algorithm. The advantage of doing so is that the
labeled pixel regions given as inputs to the segmentation algorithm
could be placed anywhere within the object of interest in order to
accurately segment and delineate the object from the rest of the im-
age. The algorithm proposed here has only one parameter β, and all
segmentations shown in this paper were performed by fixing this pa-
rameter. Finally, the algorithm simply requires solution to a sparse,
symmetric, positive-definite system of equations, which is straight-
forward to implement efficiently. Additionally, interactive editing of
the segmentation generally results in even faster computation time
since the previous solution may be used as an initial solution for
an iterative matrix solver. We show qualitative results in Fig. 1 and
quantitative results in Table 1. According to the results, our proposed
algorithm performs better in comparison to the random walker seg-
mentation algorithm for the performance metric considered.
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