
A DETAIL-PRESERVING MIXTURE MODEL FOR IMAGE SEGMENTATION

Thanh Minh Nguyen1 , Q. M. Jonathan Wu1, Senior Member, IEEE, Dibyendu Mukherjee1, and Hui Zhang1,2

1Department of Electrical and Computer Engineering, University of Windsor
2School of Computer & Software, Nanjing University of Information Science & Technology

{nguyen1j, jwu, mukherjd, nrzh}@uwindsor.ca

ABSTRACT

This paper presents a new finite mixture model for image
segmentation. First, in order to take into account the spa-
tial dependencies in an image, existing mixture models use
a constant temperature parameter (β) throughout the image
for every label. The constant value of β reduces the impact
of noise in homogeneous regions but negatively affects seg-
mentation along the border of two regions. We propose a
new way to use a different value of β throughout the im-
age. Secondly, in order to incorporate the correlation be-
tween each centre pixel and its neighboring pixels, existing
mixture model gives the same importance to all pixels in a
neighborhood window. We assign different weights to dif-
ferent pixels appearing in the window, which is based on the
fact that the clique strength should be reduced with distance.
Thirdly, our model is based on the Student’s-t distribution,
which is heavily tailed and more robust than Gaussian. We
exploit Dirichlet distribution and Dirichlet law to incorporate
the spatial relationships between pixels in an image. Finally,
expectation maximization (EM) algorithm is adopted to max-
imize the data log-likelihood and to optimize the parameters.
The performance is compared to other existing models based
on the model-based techniques, demonstrating superiority of
the proposed model for image segmentation.

Index Terms— Mixture model, detail-preserving, spatial
constraints, and image segmentation.

1. INTRODUCTION

Image segmentation is one of the heated issues in almost
every task of image processing. The objective is to cluster
all image pixels into non-overlapped, consistent regions that
have common characteristics. Accurate image segmentation
provides additional important information for diagnosis and
quantitative analysis. However, issues such as poor contrast
and the variety and complexity of images complicate accurate
segmentation. Many previous works have been carried out
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on image segmentation. Amongst the various approaches
used for segmenting an image, one of the main research di-
rections in the relevant literature is focused on model-based
techniques.

In model-based techniques, Gaussian mixture model
(GMM) [1–3] is an efficient method used in most applica-
tions. However, image segmentation results obtained from
GMM are quite poor because the spatial relationship of the
neighboring pixels in an image is not taken into its account.
In order to overcome this problem, mixture models based on
Markov random field (MRF) for pixel label are proposed
in [4] to impose spatial smoothness constraints between
neighboring pixels. Another family of mixture models based
on MRF for pixel label priors have been successfully applied
to image segmentation [5, 6]. In these models, instead of im-
posing the smoothness constraint on the pixel label as in the
above category, however, these methods aim to impose the
smoothness constraint on the contextual mixing proportions.
Although the quality of image segmentation is quite good
with noisy images, their primary disadvantage, however, lies
in its additional training complexity. The M-step of the EM
algorithm cannot evaluate the prior distribution in a closed
form.

To overcome this problem, mixture model in [7–9] as-
sumes that the prior probabilities follow a Dirichlet distribu-
tion and Dirichlet law. The main advantage is that it guaran-
tees that the prior probabilities are positive and sum to one
without requiring a reparatory projection step. However, in
order to take into account the spatial dependencies in an im-
age, existing finite mixture models [5, 8, 9] use a constant β
throughout the image and for every label. The constant value
of β reduces the impact of noise in homogeneous regions but
negatively affects segmentation along the border of two re-
gions. Besides that, in order to incorporate the correlation
between each centre pixel and its neighboring pixels in a win-
dow, the existing finite mixture models give the same impor-
tance to all pixels. Clearly, it is usually better to give more
weight to the pixels that are closer to the central pixel.

Based on these considerations, in this paper, we propose a
new finite mixture model for detail-preserving image segmen-
tation. First, we propose a new way to use a different value of
β throughout the image. Secondly, our model assigns differ-
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ent weights to different pixels appearing in a window, based
on the fact that the clique strength should be reduced with
distance. Thirdly, the spatial information between neighbor-
ing pixels of an image is considered during the learning step
based on Dirichlet distribution and Dirichlet law. Finally, to
estimate the parameters of the proposed model, the EM algo-
rithm is adopted to maximize the data log-likelihood function.

The remainder of the paper is organized as follows. In
section 2, we present a brief introduction of the finite mix-
ture model with Dirichlet spatial constraints, commonly used
in the literature for image segmentation. In section 3, we de-
scribe the details of the proposed algorithm. In section 4, we
present the experimental results, and conclusions are given in
section 5.

2. FINITE MIXTURE MODEL WITH DIRICHLET
SPATIAL CONSTRAINTS

Let xi, with dimension D, i = (1,2,...,N ), denote an observa-
tion at the i-th pixel of an image. The i-th pixel is character-
ized by the prior probabilities vector πi={πi1, πi2, ..., πiK}.
The posterior probability is denoted by yij . In order to par-
tition an image consisting of N pixels into K labels, finite
mixture models assumes that each pixel xi is independent of
the label Ωj . The density function f(xi|Θ) at a pixel xi is
given by:

f(xi|Θ) =

K∑
j=1

πijp(xi|Ωj) (1)

where, the prior probability that pixel xi is in label Ωj , which
satisfies the constraints πij ≥ 0 and

∑K
j=1 πij=1. Each dis-

tribution p(xi|Ωj) is called a component of the mixture. Note
that, p(xi|Ωj) can be any kind of distribution. In order to
properly account for the neighboring pixels during the learn-
ing step, mixture models in [7–9] are based on the Dirichlet
distribution and Dirichlet law to incorporate the spatial con-
straints. According to these models, the probability label is
given by:

p(zi|αi) =

1∫
0

p(zi|ξi)p(ξi|αi)dξi (2)

where, the discrete label zi=(zi1, zi2, ..., ziK) at the i-th pixel
is defined as:

zij =

{
1 IF : pixel xi belongs to label Ωj

0 Otherwise
(3)

and, ξi=(ξi1, ξi2, ..., ξiK), i=(1,2,...,N ), is the Dirichlet pa-
rameter in the K-dimensional probability simplex: ξij ≥ 0

and
∑K

j=1 ξij=1. In Eq.(2), αi=(αi1, αi2, ..., αiK) is the vec-
tor of Dirichlet parameters ξi. The value of αij , j=(1,2,...,K),
is non-negative: αij ≥ 0. It is worth mentioning that we

can use any non negative value of αij for the Dirichlet dis-
tribution p(ξi|αi). Applying the property of the probability
density function [7], after some manipulation, the probability
label in Eq.(2) is given by:

p(zi|αi) =
M !

K∏
j=1

(zij)!

Γ(
K∑
j=1

αij)

K∏
j=1

Γ(αij)

K∏
j=1

Γ(αij + zij)

Γ(
K∑
j=1

(αij + zij))

(4)

We now consider the condition of discrete label zi in Eq.(3).
Applying this result to the probability label in Eq.(4), with
only one realization (M=1) and that Γ(t + 1) = tΓ(t), after
some manipulation, the prior probabilities πij for the pixel xi

corresponding to the label Ωj is given by:

πij = p(zij = 1|αi) = αij

/
K∑

k=1

αik (5)

Given the density function p(xi|Ωj) and the prior probabili-
ties πij in Eq.(5), the log-likelihood function is rewritten as:

L =

N∑
i=1

log

K∑
j=1

πijp(xi|Ωj) (6)

In order to estimate the model parameters, we need to max-
imize the log-likelihood function. Once the parameter-
learning phase is complete, every pixel xi is assigned to
the label with the largest posterior probability yij .

3. PROPOSED METHOD

In order to take into account the spatial dependencies in an
image, existing finite mixture models [5,8,9] use a constant β
throughout the image and for every label. The constant value
of β reduces the impact of noise in homogeneous regions but
negatively affects segmentation along the border of two re-
gions. Besides that, in order to incorporate the correlation
between each centre pixel and its neighboring pixels in the
window ∂i, the existing finite mixture model gives the same
importance to all pixels. Clearly, it is usually better to give
more weight to the pixels that are closer to the central pixel.
Based on these considerations, in this paper, different value of
the temperature parameter (βij ) is used throughout the image
and for every label.

βij = λHij (7)

where,

Hij = exp(−
∑
m∈∂i

(y
(t−1)
ij − y(t−1)mj )

2
) (8)

where, the neighborhood of the pixel xi is represented by ∂i,
and (t-1) indicates the iteration of the previous step. By taking
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a closer look at Eq.(7), it can be visualized that the tempera-
ture parameter (βij) in the proposed method is chosen small
along the border of two regions to prevent the image from
losing much of its sharpness and details. In other words, in
homogeneous regions, the value of βij has to be chosen large
enough to tolerate the noise. In Eq.(7), λ is the parameter.

Next, in order to use more local spatial information, and
to control the influence of the neighborhood pixels depending
on their distance from the central pixel, a new factor Fij is
added in our method.

Fij =

∑
m∈∂i

Dimy
(t−1)
mj∑

m∈∂i

Dim
(9)

In Eq.(9), Dim is the spatial distance between pixel xi and
pixel xm. The distance Dim is given by:

Dim = exp(−d2im
/

2) (10)

where, dim is the Euclidean distance between pixel xi and
pixel xm. It can be visualized that the distanceDim in Eq.(10)
makes the influence of the pixels within the local window, to
change flexibly according to their distance from the central
pixel. The idea to incorporate the spatial information in Eq.(9)
is based on a fact that neighboring pixels in an image are sim-
ilar in some sense. We give the center pixel a greater weight
and gradually reduce weight to the pixels that are further to
the center pixel.

Next, we propose a novel approach to incorporate the spa-
tial information into the smoothing prior. The Dirichlet pa-
rameters αij is defined as:

αij = exp(βijFij) (11)

where βij , and Fij are given in Eq.(7) and Eq.(9), respec-
tively. Given the Dirichlet parameters αij in Eq.(11), the prior
probabilities πij in Eq.(5) for the pixel xi corresponding to the
label Ωj is rewriten:

πij =
exp(βijFij)

K∑
k=1

exp(βikFik)

(12)

In our model, p(xi|Ωj) is the Student’s-t distribution
S(xi|µj ,Σj , vj) with longer tails and one more parameter
compared to the Gaussian distribution Φ(xi|µj ,Σj). Each
Student’s-t distribution has its own mean µj , covariance
Σj , and degree of freedom vj . The Student’s-t distribution
S(xi|µj ,Σj , vj) is given by:

S(xi|µj ,Σj , vj) =
Γ(vj/2 +D/2)|Σj |−1/2

(vjπ)
D/2

Γ(vj/2)

× 1[
1 + v−1j (xi − µj)

T
Σ−1j (xi − µj)

](vj+D)/2

(13)

Given the prior probability distribution πij in Eq.(12) and the
Student’s-t distribution S(xi|µj ,Σj , vj) in Eq.(13), the log-
likelihood function in Eq.(6) is written in the form.

L =

N∑
i=1

log

K∑
j=1

πijS(xi|µj ,Σj , vj) (14)

The next objective is to optimize the parameter set Θ =
{µj ,Σj , vj , λ} in order to maximize the log-likelihood func-
tion in Eq.(14). To maximize this function, the EM algo-
rithm [11] is applied. Note that, there is no closed form so-
lution for maximizing the log-likelihood under a Student’s-t
distribution. To overcome this problem, the Student’s-t distri-
bution in previous models [10] is represented as a Gaussian
distribution with scaled precision uij :

S(xi|µj ,Σj , vj) ∼ Φ(xi|µj ,Σj/uij)G(uij |vj/2, vj/2)
(15)

Given the Student’s-t distribution in Eq.(15), application of
the complete data condition in [1, 2]. After some manipula-
tion, we have the estimates of µj and Σj at the (t+1) step:

µ
(t+1)
j =

N∑
i=1

y
(t)
ij u

(t)
ij xi

N∑
i=1

y
(t)
ij u

(t)
ij

Σ
(t+1)
j =

N∑
i=1

y
(t)
ij u

(t)
ij (xi − µ(t+1)

j )(xi − µ(t+1)
j )

T

N∑
i=1

y
(t)
ij

(16)

where, the posterior probability y(t)ij is:

y
(t)
ij =

π
(t)
ij S(xi|µj ,Λj , vj)

K∑
k=1

π
(t)
ik S(xi|µj ,Λj , vj)

(17)

and,

u
(t)
ij =

v
(t)
j +D

v
(t)
j + (xi − µ(t)

j )
T

Σ
−1(t)
j (xi − µ(t)

j )
(18)

The estimates of the degrees of freedom vj are given by the
solution of the equation

−Ψ
(vj

2

)
+ log

(vj
2

)
+ 1 +

N∑
i=1

y
(t)
ij (log u

(t)
ij − u

(t)
ij )

N∑
i=1

y
(t)
ij

+ ψ

(
v
(t)
j +D

2

)
− log

(
v
(t)
j +D

2

)
= 0

(19)
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where Ψ(·) in Eq.(18) is the digamma function. The next step
is to update the estimate of the parameter λ by using Newton-
Raphson method

λ(t+1) = λ(t) −
(
∂2L

∂λ2

)−1
∂L

∂λ
(20)

In the next section, we will demonstrate the robustness, ac-
curacy and effectiveness of the proposed model, as compared
with other approaches.

4. EXPERIMENTS

In this section, two experiments are conducted to evaluate and
compare the effectiveness of the proposed technique with oth-
ers. In order to evaluate the segmentation performance quan-
titatively, we employ the misclassification ratio (MCR) [13]
and probabilistic rand index (PRI) [14] in our experiments,
which is the number of misclassified pixels divided by the to-
tal number of pixels. Note that, for MCR, the lower the value,
the better the quality of the segmentation, while the higher
value of PRI indicates better segmentation results.

Fig. 1. Segmentation results of the synthetic image exper-
iment, (a): original image, (b): Gaussian noise (0 mean,
0.15 variance), (c): FLICM (MCR=4.29%), (d): SMM-SC
(MCR=2.68%), (e): Proposed Method (MCR=0.69%).

In the first experiment, we generated an image (271x271
image resolution) that contains two labels with luminance val-
ues [0, 1] as shown in Fig. 1(a). The image shown in Fig. 1(b)
is obtained by corrupting the original image with Gaussian
noise (0 mean, 0.15 variance). In Fig. 1(c)(e), we present the
segmentation results of FLICM [12], SMM-SC [8], and the
proposed method, respectively. As shown in Fig. 1(d), the
MCR obtained by employing FLICM (MCR=4.29%) is quite
high compared with the SMM-SC method (MCR=2.68%). As
shown in Fig. 1(d), SMM-SC method reduce the impact of
noise in homogeneous tissues but negatively affects segmen-
tation along the border of two tissues. The over-smoothing
behavior can be seen in Fig. 1(d). We can see that some de-
tails are lost in the segmented images. The accuracy of the
proposed method, as shown in Fig. 1(e), is higher than other
methods.

In the second experiment, we show the segmentation
results of real-world color images from the Berkeley’s im-
age segmentation dataset [15]. Fig. 2 shows the real-world
images from used for segmentation by employing FLICM,
SMM-SC, and the proposed method, respectively. the seg-
mentation accuracy for FLICM method is quite poor. The

Fig. 2. Color natural image segmentation (166081, 217090,
161062, 176051, 29030), (1st column): original image, (2nd

column): FLICM, (3rd column): SMM-SC, (4th column):
Proposed Method.

effect of noise on the final segmented images are still quite
highly noticeable in the marked boxes. SMM-SC can pro-
duce a better segmentation. However, looking closely in the
marked red box, we can see that a small portion of pixels
have been misclassified. Compared with these methods, the
details and edges of the marked regions are better preserved
by the proposed method.

5. RELATION TO PRIOR WORK AND
CONCLUSIONS

We have presented a new mixture model for detail-preserving
segmentation in this paper. In order to take into account
the spatial dependencies in an image, existing mixture mod-
els gives the same importance to all pixels in a neighbor-
hood window and use a constant temperature parameter (β)
throughout the image for every label. We use a different
value of β throughout the image and assign gradually reduc-
ing weights to pixels appearing in a window neighborhood
system in accordance with the distance from the center pixel
of the window. We exploit Dirichlet distribution and Dirichlet
law to incorporate the spatial relationships between pixels in
an image. Our method is based on the Student’s-t distribu-
tion, which is heavily tailed and more robust than Gaussian.
The proposed method has demonstrated an excellent perfor-
mance as compared to other existing models based on the
model-based techniques.
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