
NATURAL SCENE SEGMENTATION BASED ON A STOCHASTIC TEXTURE REGION
MERGING APPROACH

R. S. Medeiros, J. Scharcanski

Universidade Federal do Rio Grande do Sul
Instituto de Informática
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ABSTRACT
This paper presents an approach for segmenting natural

scenes based on the underlying texture characteristics using
a stochastic region merging strategy. Texture region mod-
els are constructed from patch-based stochastic texture fea-
tures using a texton dictionary learning approach. Finally, a
stochastic region merging strategy performs the image seg-
mentation based on texture region likelihood. Compared with
other state-of-the-art texture segmentation methods, our ex-
perimental results suggest that our approach potentially can
handle better highly textured regions commonly found in nat-
ural scenes, and also can be more robust to color and illumi-
nation variations.

Index Terms— Image segmentation, texture segmenta-
tion, stochastic region merging, natural scenes.

1. INTRODUCTION

Image segmentation is specially challenging in natural scenes,
where we may find a large color and illumination variability,
and grouping similar textures can be very subjective. There-
fore, many methods have been proposed for texture repre-
sentation, such as wavelet and Gabor filtering[1, 2], image
patches [3], just to name a few. Other approaches use texture
features based on brightness, color or texture gradients [4,
5]. More recently, stochastic texture features have been pro-
posed [6], which are extracted from image patches using ran-
dom projections. This allows a significant reduction in fea-
ture dimensionality, while preserving texture information and
discrimination capacity between different textures. An alter-
native approach involves the use of improved region merg-
ing strategies instead of improved texture features. These ap-
proaches iteratively merge adjacent regions (initialized with
single pixels) after a deterministic [7] or stochastic [8] crite-
ria, and have been shown to achieve strong results, even using
simple features such as intensity or color.

This paper proposes to combine stochastic texture fea-
tures with the stochastic region merging approach proposed
in [8], and evaluate its viability for natural scene segmenta-
tion. The proposed approach handles highly textured regions

based on stochastic texture models, and has the potential to
not only better account for certainties in texture character-
istics within a region, but also color and illumination varia-
tions across the image. Next, we present the stochastic texture
features used to build the proposed texture model. Then we
present the stochastic region merge strategy used to segment
the image, based on the proposed texture similarity measure-
ment.

2. REPRESENTING TEXTURES USING
STOCHASTIC PATCH FEATURES AND MODELS

Before beginning the texture feature extraction, we map all
color in the input image to the CIE L*a*b* color space, re-
ducing correlation between the luminance and color chan-
nels. To obtain a robust local texture description, rotation-
invariant stochastic texture representations (STR), based on
image patches [3] and random projections (RP) [9], are com-
puted at each channel independently. Here, let us define a
vector of stochastic texture features (denoted as vc(p)) within
the vicinity of pixel p at channel c as:

vc(p) = Φsort(Nc(p)), (1)

where Φ ∈ Rm×n,m < n denotes a projection matrix,Nc(p)
denotes the neighborhood (image patch) around pixel p at
channel c, and sort denotes a sorting operation used to in-
troduce rotational invariance since the sorted results are inde-
pendent of the original positioning of elements.

Ideally, this projection matrix Φ is an information pre-
serving transform, which can be ensured [9] if the projection
matrix Φ = {rij} is defined in a random, stochastic manner
at each pixel:

rij =

{
0 with probability 1

2 ;
1 with probability 1

2 .

A texture is assumed to be a pattern, stochastic or peri-
odic, that is repeated over some area. Although STR repre-
sents pixel-wise texture information, we need texture region
representations for regions which may have many pixels. The
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textural information in a region is modeled by assembling the
texture feature vectors in a texton dictionary [3, 6], which
contains texture feature vector prototypes.

In this work, the set of all feature vectors at a particular
channel c are used to learn a texton dictionary via k-means
clustering. As such, each texton in the texton dictionary is a
cluster centroid. This dictionary may have different number
of textons per texture class, but we have determined exper-
imentally that with a sufficient number of clusters the dic-
tionary is able to reliably represent all textures in the image.
Once the dictionary has been obtained, a texture appearance
model T for a textured region R is represented by the texton
occurrence probabilities for all channels:

T (R) = {Hc(R)|1 ≤ c ≤ 3},

where Hc(R) denotes the normalized histogram of texton oc-
currence of a textured region R for channel c. As such, the
model of a textured region R consists of 3 normalized his-
tograms, one for each color channel.

Based on the learnt texture models for the regions, we
define a texture similarity metric between regions based on
the comparison of their histograms, which will be used to
compare texture representations in our region merging strat-
egy. Since a normalized histogram provides a discrete es-
timate for a PDF, given two region appearance models, the
Bhattacharyya distance (DB) [10] between normalized his-
tograms is used for computing the texture dissimilarity be-
tween two regions. Assigning a weight to each channelWg =
[wL, wa, wb], the texture dissimilarity dT between two re-
gions Ri and Rj can be defined as

dT (Ri, Rj) =

Wg

DB(HL(Ri), HL(Rj))
DB(Ha(Ri), Ha(Rj))
DB(Hb(Ri), Hb(Rj))


∑

g={L,a,b}Wg
. (2)

3. STOCHASTIC TEXTURE MERGING AND
SEGMENTATION

Based on the texture model we introduced for representing
textured regions, let us now describe the proposed stochastic
texture merging method. First, an adjacency graph is con-
structed to model the interactions between neighboring pix-
els. The adjacency graph G = (R,E) represents the status
of the current configuration of the regions, where each ver-
tex represents a region R, and each edge represents the lo-
cal dissimilarities between two neighboring texture regions.
For a given image I , with N ×M pixels, no prior assump-
tions are made about the number of distinct texture regions
in the image; hence we assign a unique texture region label
R = {1, · · · , N ×M} to each pixel. Hence, each pixel is
associated with a unique vertex, with each initially connected
to four other vertexes (adjacent texture regions), representing
the 4-neighborhood of that pixel.

A region Ri is merged with an adjacent region Rj with a
probability of α(Ri, Rj), which denotes a novel texture likeli-
hood function that extends upon the stochastic region merging
criterion proposed by Wong et al. [8] to account for texture
characteristics:

α(Ri, Rj) = exp

[
−dT (Ri, Rj)

Λ(Ri, Rj)

]
, (3)

where dT (Ri, Rj) denotes the texture dissimilarity between
Ri and Rj , defined in Eq. 2, and Λ denotes a statistical merg-
ing penalty based on the size of the regions:

Λ(Ri, Rj) =
D2

f

2Qk

[
ln(Ψ(f)2)

Ψ(Ri)
+
ln(Ψ(f)2)

Ψ(Rj)

]
, (4)

where Ψ(R) represents the number of elements (pixels) in the
region R, Ψ(f) represents the number of pixels in the image,
Df represents the range of possible values in f , and Qk rep-
resents a regularization term at iteration k which controls the
flexibility of the merging likelihood.

Two adjacent regions are merged the following predicate
is satisfied:

P(Ri, Rj) =

{
1 if u ≤ α(Ri, Rj),

0 otherwise .
(5)

where u denotes a random number from a uniform distribu-
tion between 0 and 1. To merge the regions consistently the
evaluation order of the region merging process is important.
Therefore, the adjacency graph edges are inserted in a prior-
ity queue in the decreasing order of their weights, used in all
merging tests.

The proposed stochastic texture merging method (STM) is
based on the statistical modeling of the texture region appear-
ance, which may be challenging to obtain for small regions
(less than a few pixels) due to the local variability of highly
textured regions. To minimize this difficulty we initialize the
edge weights with the gradients of the image as pixel-to-pixel
texture differences. During this process, whenever a pair of
regions is analyzed, they are removed from the queue. Every
time a merge occurs, the adjacency graph is updated and the
priority queue is modified to reflect these changes. Once the
priority queue becomes empty the resulting adjacency graph
will yield the initial segmentation result. To reduce the chance
of over segmenting the image, we adopt an iterative segmen-
tation refinement. Given the initial segmentation result, the
stochastic texture region merging process is successively re-
peated taking the segmentation obtained in the previous step
as the input.

The regions obtained in the previous iteration are used to
build a new adjacency graph, its edges are inserted in the pri-
ority queue, and sorted in ascending order of region dissimi-
larity. As the regions on initialization map are progressively
larger after the previous merging steps, the queue is sorted us-
ing the region-wise texture dissimilarity of Eq. 2. The merg-
ing process is then repeated with a lower regularization term,
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Fig. 1. Visual results of the proposed segmentation method (bottom row) versus JSEG (top) and SRM (Middle). Red contours
indicate the boundaries of the segmented regions.

and Qk is exponentially decreased at each iteration. There-
fore, the value of Q used in the kth iteration of the region
merging process (denoted as Qk) can be expressed as:

Qk = (Q1 −Qmin) ∗ exp(1− k) +Qmin (6)

where k ≥ 1 denotes the current iteration, Q1 represents
the value of the regularization term in the first iteration, and
Qmin = 200 represents the minimum value for Q used in our
experiments.

At each iteration one Q value is used and the number of
regions is expected to decrease. If Qi − Qi−1 is too small,
the number of regions remains unaltered, and convergence is
reached. In these iterations we can avoid under-segmentation
by setting a higher value for Q, and lowering the risk of over-
segmentation.

4. EXPERIMENTAL RESULTS

To evaluate the quality of our method segmentation results,
we conducted tests on the BSDS300 dataset [11]. This
database is publicly available and consists of 300 natural
color images of 481× 321 pixels each, divided in 200 images
for training and 100 images for testing. As our approach have
no training stage, we chose to run our tests on the 200 images
used for testing, which contains many outdoor scene images.
These images were rescaled to 241 × 161 to reduce compu-
tational complexity. Since natural image segmentation can
be very subjective, this dataset provides up to 10 handmade
segmentations as ground truths for each image.

To extract the texture features, we used image patches of
W = 5 pixels, and the RP matrix reduces these patches to

M = 10 vector elements. The texton dictionary was set to
have K = 30 centroids. In the stochastic region merging
stage we set the regularization termQ to {100, 200, 400}, and
the weight vector W c

g ∈ [1, 2]. The vector Wg weights the
contributions of the color and luminance aspects to the simi-
larity measurement. The regularization term Q, on the other
hand, affects the final number of segmented texture regions.
Increasing Q tends to decrease α in Eq. 3, the merging prob-
ability drops, and we obtain more segmented regions. More-
over, decreasingQ with the iterations of the stochastic texture
region merging method helps the segmentation convergence
(see Eq. 6).

To evaluate each segmented image, the similarity to its
ground truth is measured. Let S be the segmentation map of
the input image I , and G the ground truth, both formed by a
set of non-overlapping regions labeled as Si ∈ {1, · · · , k},
and Gj ∈ {1, · · · , n}, respectively. We measure segmenta-
tion error by counting the overlapping pixels in S and G. We
first associate each texture Gi to a region in the segmentation
map by:

Ŝj = arg max
Si

|Gj ∩ Si|, (7)

where Ŝj is the region in the same spatial position as the tex-
ture region Gj . We define the segmentation accuracy given
the region map {S}, and the ground truth set {G},

ACCS
G =

1

Φ(I)

n∑
i=1

|Gi ∩ Ŝi|, (8)

where, ACCS
G indicates the proportion of image pixels that

where assigned correctly to the label indicated in {G}. If one
segment is assigned to more than one texture region in G, we
consider only the segment with the texture label that has more

1466



Table 1. Performance on the BDSD300 dataset.
Method Average Acc. (%) σ (%)
JSEG 76.38 14.10
SRM 77.41 12.56

Proposed (Q = 100) 88.94 13.82
Proposed (Q = 200) 83.86 12.02
Proposed (Q = 400) 75.00 14.09

pixels classified correctly (which may decrease the accuracy
of incorrect segmentations since regions inGmay be partially
matched).

We compared our results with other state of art methods,
like JSEG [12] and stochastic region merging (SRM) [8]. Ta-
ble 1 shows the comparative results, and indicates that in aver-
age the proposed texture segmentation method is more accu-
rate than the other tested methods, and has a similar accuracy
standard deviation (σ). In all comparisons, we used the pa-
rameters specified in the respective literature, we used Wg =
[1, 1.5, 1.5] in the tests with our proposed method (which was
determined experimentally). Figure 1 shows a visual compar-
ison of the obtained results. The proposed method appears
to be more robust to local variations in the texture regions
and detect region boundaries more accurately, while the other
methods tend to over-segment the image. Using textures fea-
tures instead of just colors (as in SRM [8]) appears to better
represent the texture regions, while dealing efficiently with
local variations inside the texture regions.

5. CONCLUSION

In this paper, we have introduced a stochastic patch-based
approach for texture modeling with a texton dictionary to
improve the segmentation of texture regions. This approach
extends the known stochastic region merging method [8],
using a new texture region likelihood criterion. Experiments
using the BDSD300 dataset have shown that the proposed
method provides a more accurate segmentation than other
tested methods proposed in the literature. Visually, this
work has shown to be more robust to variations inside the
textures, and able to find the boundaries between similar tex-
tures, avoiding over segmentation in highly textured regions.
Future work include investigating the effectiveness of the
proposed technique for recognizing specific textures, as in
skin detection and material recognition.
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