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ABSTRACT

In this paper, a vote of confidence (VC) based detector is pro-
posed to detect bright and dark regions from images. Whether
a local region is bright or dark is voted by all the pixels in this
region. Compared to the contrast based detectors, such as the
popular SIFT detector, the VC detector is invariant to illumi-
nation change and robust to abrupt variations. Experiments
are conducted on benchmark databases to verify the superior
performance of the VC detector in terms of the repeatability
and matching score. The proposed detector is also evaluated
in the application of face recognition.

Index Terms— Interest point detection, vote of confi-
dence, image matching, repeatability, face recognition.

1. INTRODUCTION

Interest points detection is an important research topic in
image processing, analysis and recognition [1–7]. It pro-
vides a way to represent images with sparse local patches,
and has been proven to be well suitable to deal with the
challenges of clutter, occlusion and variations of viewing
condition [8]. Various detectors have been developed in the
last decades [9–26], most of which are designed directly
based on image contrast. The representative ones include the
Harris [9, 10], Hessian [13], Harris Laplace/affine [11], Hes-
sian Laplace/affine [11], SIFT [14] and SURF [15] detectors.
They detect interest points from the responses derived from
the first or second order derivative of image intensity. Such
detectors prefer the local structures with high contrast. Low
contrast structures will not be easily detected even if they are
stable under difference variations. Moreover, the first or sec-
ond order derivative amplifies the image noise. This causes
these detectors sensitive to noise. The ROLG detector [19,27]
uses the rank order filter instead of the linear filter to reduce
the influence of noise and the nearby structures. However, it
still prefers the structures which have high contrast.

Detectors which are not directly designed from image
contrast are also developed. The MSER [17,20], MSCR [21],
PCBR [22] and BPLR [23] detectors are based on the im-
age segmentation algorithms. As image segmentation is still

a challenging task, the performance of these detectors be-
comes poor under image blurring in which the boundaries
of structures turn to unclear [3]. The statistical properties of
local regions are employed by the SUSAN [12], FAST [24],
and salient region [25, 26] detectors. Both the SUSAN and
FAST detectors use the similarity between the nucleus (cen-
tral pixel) and its surrounding pixels to generate the corner
map. As the corner maps of the both detectors are generated
from local regions with fixed size, these two detectors are not
scale invariant. The number of interest points detected by
the salient region detector is small due to the greedy cluster
method used to group the nearby interest points [3].

Instead of computing the corner map directly from the im-
age contrast (e.g. SIFT [14]), or using the image segmentation
algorithm (e.g. MSER [17]) or based on the local statistical
property (e.g. salient region detector [25]), we proposed a
vote of confidence (VC) based detector in this paper. Each lo-
cal region is separated into a concentric ring and circle. Mu-
tual voting is conducted by these two parts. Interesting points
are detected from the map of the voting confidence score. The
proposed VC detector is robust to illumination changes and
effective to cluttered structures.

2. VOTE OF CONFIDENCE BASED DETECTOR

Instead of requiring all the pixels in the local regions brighter
or darker than their surrounding as done by the MSER detec-
tor [17], the brightness/darkness of a local region is measured
by a linear combination of the two levels of confidence de-
fined as follows.

Confidence level 1: the normalized number of pixels in a
region that are brighter/darker than the majority of the pixels
in its surrounding region.

Confidence level 2: the normalized number of pixels in the
surrounding region that are brighter/darker than the majority
of the pixels in its surrounded center region.

By using these two confidence levels, the measurement of
the brightness/darkness has a larger toleration of the illumi-
nation variation and abrupt structures than using only one. In
order to simplify the problem of local region detection, we
restrict the local region to a circle image patch, which is also
adopted by many detectors [12, 14, 18, 25]. Each local region

1459978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



(a)

(b)

(c) (d)

(e) (f)

S1

S2

Fig. 1. (a) input image. (b) an enlarged image patch. (c)&(d)
voting for brightness: (c) voting results by the pixels in the
surrounding part and (d) voting results by the pixels in the
inner part. (e)&(f) voting for darkness: (e) voting results by
the pixels in the surrounding part and (f) voting results by
the pixels in the inner part. For each voting pixel in (c) to
(f), green color represents voting by 1 while blue color means
voting by 0. Best viewed in color.
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Fig. 2. Voting maps of (a) bright regions and (b) dark regions.
Best viewed in color.

(for example, shown in Fig. 1(b)) is separated into two parts:
inner circle disk S1 and its surrounding ring S2. Confidence
levels 1&2 are generated from these two parts.

The vote of confidence (VC) is proposed in Section 2.1
to measure the degree of brightness and darkness. Algorithm
to remove the unstable points on ridge is presented in Section
2.2. The VC detector in multiple scales is given in Section
2.3.

2.1. Voting Algorithm

Two quantitative measurements, named VC for brightness
and darkness (VCB and VCD), are proposed to measure the
degree of brightness and darkness. As the VCB and VCD
follow the analogous rules, we take the VCB as an example
to derive the voting algorithm.

A bright image patch should be bright in the central re-
gion and dark in its surrounding. Therefore, for each image
patch, such as Fig. 1(b), the VCB is determined by two parts:
the VC that the inner circle S1 is bright and the VC that its
surrounding ring S2 is dark. The confidence of brightness for
S1 is voted by the pixels in S2, and similarly the confidence
of darkness for S2 is voted by the pixels in S1. The follow-
ing question is that how a pixel votes its counterpart region,
for example, how a pixel Ii in S2 votes for the brightness of

S1? Obviously, if all the pixels in S1 are brighter than Ii, Ii

should vote 1 for the brightness of S1. However, this makes
it sensitive to impulsive noise and abrupt structures. In order
to alleviate this problem, in this paper the voting rule is set as
follow.

Voting rule: If a pixel Ii is brighter/darker than more than
half pixels in the counterpart region Sj , it votes 1 for the dark-
ness/brightness of Sj , otherwise, it votes 0. Let the median for
Sj be φj . The voting rule for brightness is

vb(Ii, Sj) =

{

1, if Ii < φj

0, otherwise
, (1)

and that for the darkness is

vd(Ii, Sj) =

{

1, if Ii > φj

0, otherwise
. (2)

One example of the voting for the bright region is shown
in Fig. 1(c) and (d). In Fig. 1(c) and (d), green color pixels
represent voting by 1 while blue color pixels mean voting by
0. Fig. 1(c) depicts the voting results of the pixels in S2 for the
brightness of S1. As S1 is bright, the majority of the pixels in
S2 vote 1 for the brightness of S1. Similarly, in Fig. 1(d) the
majority of the pixels in S1 vote 1 for the darkness of S2.

The VCB is a linear combination of the normalized voting
results for the brightness of the inner circle (Confidence level
2) and that for the darkness of the surrounding ring (Confi-
dence level 1). The VCB at location t is

V CB(t) =
∑

i∈S2

vb(Ii, S1)

s2

+
∑

i∈S1

vd(Ii, S2)

s1

(3)

where s1 and s2 are the area size of S1 and S2, respectively.
The response of the VCB (named VCB map) for Fig. 1(a) is
shown in Fig. 2(a). It is seen that the bright regions have high
response while the dark regions have low response.

Similarly, the VCD at location t is defined as

V CD(t) =
∑

i∈S2

vd(Ii, S1)

s2

+
∑

i∈S1

vb(Ii, S2)

s1

. (4)

The VCD map for the image in Fig. 1(a) is shown in Fig. 2(b).
It enhances the dark regions and suppresses the bright regions.

2.2. Ridge Suppression

By detecting the local peaks, interest points are extracted from
the VC maps (VCB and VCD maps). If the scale of the image
patch matches with the width of the ridge, the VC on this
ridge may be larger than 1. In this case, slight vibration may
cause false detection of interest points on the ridge. Such
kind of unstable interest points need be removed. Although
the peaks of the VC response on ridge have large amplitude,
the difference between the peak value R(t) and the maximum
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value in the corresponding surrounding region S2 is small.
Hence, we employ the ratio

λ = (R(t) − max{R(i)|i ∈ S2})/max{R(i)|i ∈ S2} (5)

to remove the unstable interest points on the ridge. If λ is
small, it means the peak is very similar to its nearby region.
Such interest point candidate is most likely on the ridge. We
remove such candidates if λ < 0.05, which is chosen experi-
mentally.

2.3. VC Detector in Multiple Scales

Interest point detection in multiple scales is an important is-
sue in vision applications. By changing the radius of the local
image patches S1 and S2, the VC detector achieves the multi-
scale detection of local structures. Similar to other detectors,
the structures detected by the VC detector appear in a wide
range of scales. Sometimes, no sharp maximum is generated
along the scale dimension. In this case, the local extremum
along the scale dimension is sensitive to noise, and it is unreli-
able in determining the scale size. From another perspective,
as the local structure appears in multi-scales, the result should
be more reliable if we use all such scales instead of only one
to make a decision. In the following, a grouping method is
proposed to cluster the connected interest points.

Let an interest point at location (xi, yi) and scale si be
Pi = (xi, yi, si, Ri, Fi) where Ri is the VC response and
Fi ∈ {Bright, Dark} is the flag of bright or dark region.
The connection of two interest points Pi and Pj is defined
as: 1) they are both bright or both dark regions, and 2) they
are close along both the spatial and scale dimensions. In this
work, the distance in the spatial dimension is restricted as
√

(xi − xj)2 + (yi − yj)2 < 0.3si, and in the scale dimen-
sion si and sj should be the immediately neighbor or only
one discrete scale exists between them. All the connected in-
terest points are clustered into one group. Assume a group Gp

contains N interest points as Gp = {Pp1,Pp2, ...,PpN}. A
representative interest point Pp = (xp, yp, sp, Rp, Fp) for this
group is generated by setting the location xp =

∑N

i=1
xi/N ,

yp =
∑N

i=1
yi/N , the scale sp =

∑N

i=1
R2

i si/
∑N

i=1
R2

i and
the response Rp = max{R1, R2, ..., RN}. By weighting
the scale with R2

i , the scales with large VC responses have
high influence on determining the scale of the corresponding
group.

The proposed algorithm for the VC detector is summa-
rized as follow:

1: Generate the VC response on multi-scales.
2: Detect the local maximums on both the scale and spatial

dimensions with some toleration.
3: Remove the points on ridges.
4: Group the interest points which are corresponding to the

same structure.

(a) (b)

(c) (d)

(e) (f)

Fig. 3. (a)&(b) input images. (c)&(d) interest points detected
by SIFT detector. (e)&(f) interest points detected by VC de-
tector. Best viewed in color.

3. EXPERIMENTS

3.1. Visual Inspection

The images from the Oxford database [2] ‘leuven’ data set are
used to depict some visual results of the VC detector under
illumination changes. The setting of different detectors is the
same as that given in Section 3.2. It is seen that the number
of the interest points detected by the SIFT detector (shown
in Fig. 3(c) and (d)) decreases with the scenes darkening. In
contrast, the influence of the illumination change has little
affect on the VC detector. Most of the structures detected
by the VC detector are repeated in these two scenes (shown
in Fig. 3(e) and (f)). Besides, although some structures in
this scene cluster with each other, the VC detector can still
separate them and detect them out.
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Fig. 4. (a) repeatability and (b) matching score on the Oxford
database. In each column, horizontal axis represents the im-
age index in the corresponding data set. From left to right of
(a) and (b) are the results on the scale change for structured
sequence, the scale change for textured sequence, the blurring
for textured sequence and the illumination change sequence,
respectively. Best viewed in color.

3.2. Repeatability and Discrimination Tests

The aim of this experiment is to evaluate the detectors under
different variations based on the protocol in [2]. Detectors
are compared by repeatability and matching score. Two de-
tected regions are repeated if their overlap is above a certain
threshold (it is set to be 60% as suggested in [2]). The re-
peatability/matching score is the ratio between the number of
repeated/matched points and the larger number of detected
points in the same scenes of each image pair. The test data
sets are chosen from the standard publicly available database
in [2] .

Similar to that done in [18], interest points are detected
on the half-sampled images. For the VC detector, interest
points are detected on 5 octaves by half-sampling the previ-
ous octave. In each octave, local extrema are detected on 6
scales: {σn}n=1,2,...,6 = {3, 4, ..., 8}. The threshold to re-
move the low VC points is set to be 1.5. Four detectors, the
MSER [17], Harris-affine (HR-A) [11], Hessian-affine (HS-
A) [11] and SIFT [14] detectors are compared with the VC
detector. The default parameters of these four detectors sup-
plied by authors are employed here. SIFT descriptor [14] is
used to describe interest points for all detectors included here.
Experimental results are shown in Fig. 4. The VC detector
outperforms other 4 detectors in all cases.

3.3. Application to Face Recognition

Face recognition is an active research topic [28–31] and some
work has been done to apply SIFT descriptor in face recog-

Table 1. Recognition Rate on AR, ORL, GT, and FERET
Databases.

AR ORL GT FERET
VC 96.8% 94.5% 91.1% 96.7%

SIFT 94.3% 90.0% 84.0% 89.9%
HS-A 88.6% 80.0% 74.0% 85.3%
HR-A 74.5% 66.5% 47.4% 49.7%
MSER 92.7% 91.0% 81.1% 89.3%

nition [32, 33]. In this part, the VC detector is compared
with the MSER [17], HR-S [11], HS-A [11], and SIFT de-
tectors [14]. As the default setting produces too few interest
points for the face recognition for all detectors, the contrast
threshold is set to be zero for all detectors in this experiment.
For the VC detector, the threshold to remove the low VC
points is set to be 1. For the MSER detector, the minimum
size of output region is set to be 1/4 of its default setting to
make it workable on all face databases. All the detected inter-
est points are described by the SIFT descriptor. The matching
algorithm is the one given in [14].

The AR [34], ORL [35], GT [36] and FERET [37]
databases are used to evaluate these detectors. For the AR
database, gray images are normalized into the size of 60×85.
75 subjects with 14 nonoccluded images per person are se-
lected. The first 7 images of all subjects are chosen as gallery
set, and the remaining 7 images as probe set. Images in the
ORL database are normalized into the size of 50×57. The
first 5 images of all 40 subjects are chosen as gallery set, and
the remaining 5 images as probe set. Gray images in the GT
database are normalized into the size of 60×80. The first 8
images of all 50 subjects are chosen as gallery set, and the
remaining 7 images as probe set. For the FERET database,
images are cropped into the size of 60×80. 1194 subjects
with 2 images per person are selected. The first 1 image
of all subjects is chosen as gallery set, and the remaining 1
image as probe set. Table 1 shows the recognition rate on the
four databases. It is seen that the VC detector significantly
outperforms the other 4 detectors over the four databases.

4. CONCLUSIONS

A vote of confidence based detector is presented in this pa-
per to detect bright and dark regions from images. Voting
rules are proposed to tolerate the impulsive noise and abrupt
structures. Grouping algorithm is designed to determine the
scales of local structures. Compared to the LoG filter, the
VC response is independent of image contrast and robust to
cluttered surrounding. Experimental results demonstrate that
the VC detector has better performance in dealing with scale,
blurring and illumination changes compared to other 4 detec-
tors in terms of repeatability and matching score. Its superior-
ity is further verified on the experiments of face recognition.
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