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ABSTRACT 

 
A dynamic thresholding method is proposed for use in the 
Hough transform to detect complex curves in images 
robustly. While determining edge pixels contributing to the 
peak in the Hough space for detecting a curve with noise 
and other errors, the proposed method can endure the errors 
by detecting pixels coming from an equal-width shape 
which is centered at the curve with a small width 
everywhere along the curve. This equal-width shape 
detection capability is accomplished by the use of a dynamic 
threshold for pixel selection, which is derived from the use 
of the first-order directional derivative of the function 
describing the curve. Three conventional methods are 
compared to show the superiority in robustness of the 
proposed method via experimental results, and a real-time 
application of the method for quick detection of lines in 
omni-images is also demonstrated. 

Index Terms— Image signal processing, Hough 
transform, shape detection, real-time application. 
 

1. INTRODUCTION 

The Hough transform is widely used in computer vision 
applications to detect shapes in noisy images. It includes 
three main steps: image thinning, cell value accumulation, 
and voting for peak value detection. In the image thinning 
step, a standard method is to conduct edge detection to 
extract edge pixels in the input image. In the cell value 
accumulation step, each edge pixel is transformed into a 
curve in the parameter space (also called Hough space), and 
the values of the corresponding elements in the Hough 
space, called Hough cells, are all incremented by one. 
Subsequently, the voting step is conducted to find the peaks 
(local maximums) in the Hough space, which are taken 
finally as the parameters of the detected shapes. 

The cell value accumulation step is essential in the 
Hough transform, also known as the evidence gathering step. 
Two different ways are used in this step [1, 2]. The first is to 
find all the edge pixels corresponding to each Hough cell, 
which is called the forward-mapping method in this study 
since it directly describes the shape desired to be found. The 
second way is to find all the Hough cells corresponding to 
each edge pixel, which is called the backward-mapping 
method in this study since it finds the parameters of the 

shape in a backward manner from image pixels’ coordinates. 
If the Hough space and the image space are both continuous, 
these two methods yield the same results. However, since 
the image space is discretized and represented by pixels, and 
since the Hough space is discretized and represented by an 
accumulation array, the two methods become different from 
each other in detail [2]. 

Although the forward-mapping method is more 
straightforward, the backward-mapping one is used more 
often because it can be accelerated by many ways, e.g., by 
the use of an inverse function [3,4], a gradient method [5, 6, 
7], a one-to-one mapping [8, 9], certain special geometric 
relations [10, 11], etc. However, since a uniform 
quantization of the Hough space results in a non-uniform 
precision of the computed curve in the image space [1], the 
backward-mapping method is found to yield some undesired 
effects, especially when used to detect complicated shapes 
(as shown in Sec. 3.1); and so, it is mostly used to detect 
simple shapes like lines [3], circles [5, 6, 7, 11], ellipses [4, 
8, 10], etc. This problem becomes more serious when wide-
angle cameras are used for image taking. For example, 
omni-images captured by catadioptric omni-cameras are 
distorted largely, and straight space lines projected on omni-
images become quadratic curves. Therefore, to robustly 
detect such complicated shapes, a forward-mapping method 
is needed to decide pixels corresponding to each Hough cell.  

In the forward-mapping method, if a shape to be 
detected is described by a function F, then pixels 
contributing to the accumulation of the (largest) peak cell 
value in the Hough space theoretically are just those with 
their coordinates (u, v) satisfying the equation F(u, v) = 0. 
However, since these coordinates (u, v) in practice are with 
errors coming from quantization, noise, edge detection, 
imprecise camera calibration, etc. [2][11], the mentioned 
pixels, with such erroneous coordinates (u, v), instead will 
not all lie precisely on the curve F(u, v) = 0. To endure such 
imprecision, it is desired that pixels contributing to the peak 
cell value come from an equal-width shape both centered at 
the curve F(u, v) = 0 and with a small width W everywhere 
along the curve, instead of coming just from the thin curve 
itself. A simple method to achieve this goal is to define a 
small tolerant threshold value T, so that the aforementioned 
erroneous coordinates satisfy the inequality 

 ( , )F u v T . (1) 
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Here, the threshold T should not be fixed because when 
dealing with a complex curve like a quadratic one, a fixed T 
might even not exist for use to generate an equal-width 
curve according to our experimental observations (discussed 
in Sec. 2.2). Instead, T should be defined dynamically for 
distinct shapes and pixel locations, as done in this study. 

In more detail, a dynamic thresholding method is 
proposed to decide the threshold value T dynamically in 
accordance with the image pixels’ positions and the Hough 
cells’ values. Compared with conventional methods, the 
proposed method has at least the following advantages: (1) 
being able to detect equal-width curves to absorb 
aforementioned imprecise coordinates; (2) being capable of 
detecting complex curves; (3) having no need of parameter 
tuning; and (4) being good for fast computations. 

Subsequently, in Sec. 2 the proposed method is derived, 
and three conventional methods are described and compared. 
Experimental results showing the merits of the proposed 
method and a real-time application of the method for 
detecting space lines in omni-images are given in Sec. 3, 
followed by conclusions in Sec. 4. 

2. IDEA OF THE PROPOSED METHOD 

In the cell value accumulation step where pixels 
contributing to Hough cell values are determined, it is 
desired, as mentioned previously, to develop a method for 
detecting pixels of an equal-width shape both centered at the 
thin curve F(u, v) = 0 and with an equal width W 
everywhere on the curve. The proposed method for this goal 
is derived in Sec. 2.1, followed by comparisons with 
conventional methods in Sec. 2.2. 

2.1. Derivation of proposed method 

Given a pixel P with coordinates (u, v), two cases can be 
identified. One is that F(u, v) < 0, where the coordinates (u′, 
v′) of the closest pixel P' on the curve F = 0, as depicted in 
Fig. 1, can be estimated by the use of the direction of the 
gradient vector at (u, v) to be 

 
( , )
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where d is an unknown distance. Then, the function value 
F(u′, v′) at (u', v') can be linearly estimated by the use of the 
first-order directional derivative to be 
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Also, because pixel P' with coordinates (u', v') is on the 
curve, we have F(u′, v′) = 0, so that (3) implies that 
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or equivalently, that 
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Fig. 1. Illustration of proposed dynamic thresholding method. 
 
Then, as illustrated in Fig. 1, the inequality d < W/2 can be 
used to determine whether a pixel with coordinates (u, v) is 
within the equal-width curve shape. This inequality, when 
combined with (4), leads to 
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or equivalently, to 

 ( , ) ( , )
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In the other case that F(u, v) > 0, similarly, the 
coordinates (u′, v′) of the closest point P' on the curve F = 0 
can be linearly estimated by the negated gradient vector 
F(u, v), so that coordinates (u′, v′) can be expressed as 
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Then, following similar derivations, we can get 

 ( , ) ( , )
2

W
F u v F u v   . (6) 

The two inequalities of (5) and (6) can be combined to get 

 ( , ) ( , )
2

W
F u v F u v   , (7) 

which is of the form of the inequality of (1) used in the 
constant thresholding method. But differently, the threshold 
T can now be taken to be (F(u, v)W)/2 whose value can 
be dynamically determined for pixels with different 
coordinates (u, v) as well as for Hough cells with different 
parameters related to the function F, in order to detect a 
desired equal-width curve shape in the image space. 

Theoretically, the dynamic thresholding method 
proposed above is based on linear approximation. 
Accordingly, the estimated function value F(u′, v′) will 
become inaccurate when the desired curve width W 
becomes large. However, since the curve width is used to 
overcome small errors in the input data, the width W may be 
taken to be a small number. So, the proposed method is 
expected to yield good results in most applications. 

2.2. Comparison with other conventional methods 

As stated in Sec. 1, the forward- and backward-mappings 
are two ways to conduct the cell value accumulation task. In 
the following, three conventional methods are described and 
compared with the proposed method. 

2.2.1. Forward-mapping by constant thresholding 
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In a forward-mapping method with the threshold T defined 
to be a constant value, the inequality (1) is used to decide 
whether an edge pixel with coordinates (u, v) contributes to 
the accumulation of a Hough cell value. This method can 
generate a desired equal-width curve as shown in Fig. 2(a) 
when detecting simple shapes; however, it generates bad 
results when dealing with complicated shapes as shown in 
Fig. 2(b). Furthermore, even if an equal-width curve can be 
generated, the relation between the threshold T and the 
curve width W is still unclear and it needs further analysis or 
experiments to derive a reasonable value for T. 

2.2.2. Backward-mapping by examining each Hough cell 
In a backward-mapping method which examines each 
Hough cell, the cells with their values contributed by an 
edge pixel with coordinates (u, v) can be derived by: (1) use 
(u, v) and function F to find a parametric equation 
describing all the curves going through (u, v); (2) regard the 
equation as the description of a hypersurface in the Hough 
space, and examine each cell to detect those intersecting this 
hypersurface, and increment their values. One drawback of 
this method is that, which pixels contribute to cell value 
accumulations depends on the cell size, and these pixels 
together are not of a desired equal-width shape, as shown by 
the example appearing in the 2nd row in Fig. 4. 

2.2.3. Backward-mapping by use of an inverse function 
In a backward-mapping method using an inverse function, 
the Hough cells with their values contributed by an edge 
pixel with coordinates (u, v) are determined by: (1) 
enumerate the first n  1 parameters of the Hough space, 
where n is the dimension of the space; and (2) derive the nth 
parameter by the inverse function of F and the coordinates 
(u, v). This method is faster than the previous one, but has 
some drawbacks. First, it cannot generate desired equal-
width shapes. Second, the inverse function might be 
difficult to derive. Furthermore, different parameterizations 
and different ways of parameter enumerations might yield 
different results, as shown in Fig. 3.  

3. EXPERIMENTAL RESULTS 

In this section, the validity, effectiveness, and robustness of 
the proposed dynamic thresholding method for the Hough 
transform are shown by comparing the proposed method 
with four other methods as listed in Table I for detecting 
four different types of shapes as listed in Table II. In the 
following, the shape of the pixels contributing to a peak 
value accumulated in the Hough space is compared in Sec. 
3.1, some measures to test the robustness of these methods 
are shown in Sec. 3.2, and finally, a real-time application of 
the proposed method for detecting space lines in omni-
images is demonstrated. 

3.1. Pixels contributing to a Hough cell value 

The pixels contributing to the peak in the Hough space for 
detecting each of the four shapes listed in Table II using 

each of the five methods listed in Table I are drawn in Fig. 4. 
Recalling that these pixels are desired to form an equal-
width shape, one can see that the proposed method yields 
the best results for both simple and complex shapes as 
shown in the leftmost column in the figure, and that the 
conventional methods cannot generate equal-width curves, 
especially when detecting complicated shapes. 
 

 
(a) 

 
(b) 

Fig. 2. Pixels (marked as dotted blocks) contributing to a 
Hough cell value when detecting (a) a line, and (b) a curve. 

 

 
(a) 

 
(b) 

Fig. 3. Hough cells (dotted blocks) with values contributed by 
an edge pixel when enumerating parameter (a) A, and (b) B. 

 
Table I. Used Hough transform algorithms. 

No. accumulation method described in … 

(H1) the proposed method Sec. 2.1 

(H2) constant threshold 1.0 Sec. 2.2.1 

(H3) constant threshold 100 Sec. 2.2.1 

(H4) examining each cell Sec. 2.2.2 

(H5) inverse function Sec. 2.2.3 

 
Table II. Shapes used in experiments. 

shape equation cell size 

(S1) line v = Au + B A: 0.1; B: 10 

(S2) circle / 
ellipse 

2 2
0 0 1

u u v v

A B

        
   

 u0: 10; v0: 10; 
A: 10; B: 10 

(S3) sine and 
cosine 

sin( ) cos( )v A Bu C Du 
 

A: 10; B: 0.1; 
C: 10; D: 0.1 

(S4) space lines 
in omni-images

described in (8) A: 0.1; B: 0.1 

3.2. Robustness for noise input data 

To test the robustness of each different cell-value 
accumulation method, the ground-truth curve is first drawn 
on an image. Then, the pixels on the curve are perturbed 
within a circle with a diameter of 5 pixels to generate curve 
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pixels with small errors. Also, 1% pixels of the entire image 
are randomly noisified as noise pixels. The true positive rate 
(TPR) and the false positive rate (FPR) for each of the five 
methods are calculated accordingly respectively by: 

 
# of curve pixels contributing to the peak cell value

total # of the original curve pixels
TPR  ; 

 
# of noise pixels contributing to the peak cell value

total # of the noise pixels
FPR  . 

 

 
Fig. 4. Pixels (in red) contributing to peak cell value. From left 
to right: results of algorithms H1 to H5, and from top to bottom: 
results for shapes S1 to S4. The proposed method yields the best 
results as shown in the leftmost column. 
 

As stated previously, it is desired that the curve pixels 
all contribute to the peak-value accumulation, so a high TPR 
is desired. Contrarily, noise pixels which make such 
contributions should be as few as possible, so a low FPR is 
desired. As can be seen in Fig. 5, the proposed method 
yields very high TPRs and very low FPRs for all the four 
types of shapes, showing its robustness; and this is not the 
case for each of the other four methods. 
 

 

 
Fig. 5. TPR and FPR of five Hough transform algorithms for 
detecting four types of shapes. The proposed method yields high 
TPRs and low FPRs for all the shapes, and the others do not. 

3.3. A real-time application using omni-cameras 

As the technology advances, the memory is much larger and 
cheaper in recent days, but many applications did not make 
good use of them. In this paper, we propose a method to 
conduct the Hough transform in real-time using a large 
look-up table kept in memory, and apply the method to 
carry out a real-time application of detecting space lines in 
omni-images taken at a very high speed. 

The look-up table is constructed as follows. For each 
pixel’s coordinates (u, v) in the input image, the Hough cells 
whose values are contributed by this pixel are determined 
by the proposed dynamic thresholding method as stated in 

Sec. 2.1. Then, these Hough cells are recorded in this table 
with indices [u, v]. After all the coordinates (u, v) are 
processed and recorded, the table construction is finished. 
With the table, all the computations in the Hough transform 
can be removed, so that the Hough transform can be 
conducted by table lookup operations in a very fast speed. 

The omni-camera used in the experiments is a 
catadioptric one with a hyperboloidal-shaped mirror. The 
focal length f is 522.45, the eccentricity was calibrated [12] 

to be 2 20.022 1.9211,u v   and the resolution is 
640480. The curve of a space line projected on an image 
taken by the omni-camera can be described by [13]: 

 2 2
1 2 3 4 5 6 0C u C uv C v C u C v C      , (8) 

where the coefficients are 

  22 2
1 7 1C A B C   ; 2 2

2 2 1C A A B   ; 

 22 2
3 71C A C B   ; 4 72C ABC f ;  

 2 2
5 72 1C BC A B f   ; 2 2

6C B f ; and 
2

7 2

1

1
C








.  

The range of the two parameters A and B are both taken to 
be from 1 to 1 and the Hough space dimension is chosen to 
be 6464.  

The experiments were conducted on a PC with an Intel 
i5-2400 CPU with a clock rate of 3.10GHz. The Hough 
transform process takes about 35~50 milliseconds ( 20~28 
fps), depending on the number of edge pixels; and the look-
up table takes about 800MB in the main memory. Two 
detection results are shown in Fig. 6, which show the 
feasibility of the proposed method for real-time uses. 
 

 
(a) 

 
(b) 

Fig. 6. Two real-time detection results. Left ones are input 
images, and the results are superimposed on the right ones. 

4. CONCLUSION 

A dynamic thresholding method has been proposed to 
accomplish the cell-value accumulation task in the Hough 
transform process. Differing from the conventional methods, 
the proposed method can detect complicated shapes more 
robustly, and has the merits of generating equal-width 
curves to endure noise and other errors; detecting 
complicated shapes; needing no parameter tuning; and 
conducting fast computations. A real-time application of the 
method for detecting space lines in omni-images has also 
been demonstrated. The proposed method can be applied as 
well to data acquired by 3D sensors (e.g., the Microsoft 
Kinect) to detect 3D analytic shapes, and its real-time uses 
can be extended further to on-line calibration, mobile robot 
navigation, vehicle driving assisting applications, etc. 
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