
A ROBUST CSS CORNER DETECTOR BASED ON THE 

TURNING ANGLE CURVATURE OF IMAGE GRADIENTS 

 
Cihan Topal1, Kemal Özkan2, Burak Benligiray1, Cuneyt Akinlar1 

 
1Anadolu University 

Department of Computer Engineering 
Eskisehir, Turkey 

 

2Eskisehir Osmangazi University 
 Department of Computer Engineering 

Eskisehir, Turkey 
 

ABSTRACT 

 
In this study, we present a new contour-based corner detection 
method based on the turning angle curvature computed from the 
contour gradients of the image. In general, curvature is computed 
with the pixel locations of the extracted image contours. In most 
contour extraction methods, the image gradient information is 
already computed. The proposed algorithm makes use of this 
available information to compute the curvature function and takes 
local extremums as potential corner candidates. Afterwards, the 
candidates are validated by a novel validation algorithm which 
tries to approximate the local geometric structure of the contour 
with an iterative least squares estimation algorithm. Thus, we not 
only eliminate the false detected corners; but also estimate the 
corner strength precisely in terms of degrees. The experiments 
show that the detected corners with gradient-based turning angle 
curvature are more durable to affine transformations according to 
the ACU and LE criterions.  
 

Index Terms— Corner detection, curvature scale space 
(CSS), turning angle curvature, corner validation 

 
1. INTRODUCTION 

 
Corner detection has critical importance in computer vision 
research due to the substantial need for robust keypoint detection 
algorithms. Among many others, object recognition, motion 
tracking, pose estimation and image registration applications are 
active research problems that utilize corner detection as a critical 
step. For this reason, corner detection methodologies constitute a 
crowded set in the literature and can be classified into three major 
types according to detection strategies. First, intensity based corner 
detectors [1-7] try to locate the corners by directly using the 
intensity values of the pixels on the image. Second, contour based 
methods [8-16], first extract the planar curves from the image, and 
then process these planar curves to find the sharp changes, which 
correspond to corners. Third and last, model or template based 
methods [17-20] aim to locate the corners by fitting the image 
patterns onto a mathematical model.  

There are several pros and cons for each of these strategies. 
Intensity based methods are very sensitive to fine details on the 
image; nevertheless, they are very sensitive to noise for the same 
reason. Contour based methods response to noise in a better way 
but efficient extraction of the planar curves from the real images is 
usually a tough problem. In contour based methods, lying on an 
edge segment becomes a prerequisite for an image point to be a 
corner. This situation provides the detection of reliable corners, 
which are also coherent to the human visual system.  

In general, the contour based studies compute the curvature 
function with the coordinates of contour pixels with the formula in 
Eq. 1 [8-16]. In this study, we propose a new contour based corner 
detection algorithm based on the turning angle curvature of the 
contours. Another contribution of the study is the employment of 
the novel edge segment detection algorithm, Edge Drawing [21], to 
extract the planar curves efficiently. Furthermore, we propose a 
novel geometrical false corner removal method that is also able to 
estimate the strength of the corner precisely in terms of degrees.  
 

2. PROPOSED METHOD 

 
In geometry, curvature can be defined as the amount by which a 
curve deviates from being straight and the most common method 
to compute the curvature is: 
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where x(t) and y(t) denote the x and y coordinates of the curve 
points and the dots denote the first and second derivations with 
respect to time.  

Another way to compute the curvature is by taking the 
difference between tangents of consecutive points, called the 
turning angle curvature [22]. Computing the turning angle 
curvature is usually easier because a typical contour detector 
computes the gradient magnitudes at each pixel of an image during 
edge detection [21, 23]. Therefore, it becomes possible obtain the 
tangents of the contour points in an effortless manner by using the 
horizontal (Gx) and vertical (Gy) gradient responses as shown in 
Fig. 1. Thus angle values (α) for every pixel location on the image 
are obtained easily and they correspond to the angle of the gradient 
magnitude vector with respect to the x axis. 

 

 

 
 
 
 
 
 

Figure 1. Tangent estimation using the gradient responses. 

To obtain the curvature response of the extracted angle values, 
we simply need to compute the relative angle variations for 
consecutive gradient vectors. If the tangent estimation for 
consecutive contour elements is considered to be a function of time 
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denoted by α(t), then the angle changes along the contour with 
respect to time. The illustration in Fig. 2 shows two consecutive 
gradient vectors (Gi and Gi+1) and the relative angulation (θ) in 
between them. 

 
 

 

 

 

 

Figure 2. Geometric representation of turning angle curvature. 

The θ in Fig. 2 denotes the local variation of the curve from 
being flat for current location t. Therefore, the turning angle 
curvature as a function of t can be computed for two consecutive 
gradient vectors of different lengths as follows [22]: 
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Since the ε values of consecutive elements (i.e. pixels) of the 
contour are fixed and equal to 1 in our case; ε becomes irrelevant. 
Thus the angular curvature can be obtained by a simple derivation 
of α(t) function with respect to time;  

)1()()( −−= ttt αακα                             (3) 

The curvature shown in Eq. 3 denotes the turning angle 
curvature [22]. To obtain the curvature at a specific Gaussian scale 
σ, i.e. κα(t,σ), we need to convolve the κα with a Gaussian kernel. 
To do this, we need to re-parameterize the consecutive angle 
values with a simple normalization process. In this normalization, 
we compute cumulative gradient series (��) of ���� by adding up 
the acute angle values between consecutive gradient directions;  

����� � ����� � 1� 
 �,															� � 90
���� � 1� 
 180 � �, � � 90               (4) 

where � � ���� � ��� � 1�. After obtaining ��, we convolve it 
with ),( σtg& , which is the derivative of the Gaussian kernel in 

scale σ;  

    ),()(),( σασκα tgtt c &∗=                        (5) 

Once the turning angle curvature is computed, we detect all 
corner candidates as the local maximas of the curvature which are 
bigger than a certain global threshold. Finally, we validate the 
detected corner candidates with the method explained in sec. 2.1. 

 

2.1. Corner Validation Method 

 

In real images, the local variations on contours are very common 
and curvature responses of corners and non-corners can be very 
difficult to distinguish. Moreover, there is no mathematical 
definition of corners that even barely corresponds to the human 
perception. For this reason, corner detection algorithms first aim to 
detect all appropriate corner candidates, and then try to eliminate 
the false ones with validation methods. Most of the corner 
validation algorithms are based on the curvature function; 
however, curvature function can easily be corrupt due to noise and 
Gaussian scale convolution process. Mokhtarian et al. [9] try to 
find reliable corners by tracking them in an intra-scale manner. In 
[11], He and Yung try to solve this problem by applying adaptive 
local threshold in a dynamic region of support (ROS), which is 

determined with the curvature function. In [16], the authors use a 
two-step refinement process, which is mainly based on the 
curvature information. The common problem for these methods is; 
they only use the curvature information for validation in an 
isolated manner regardless of what the spatial structure is. 

In this paper, we propose a very simple and efficient corner 
validation method that enables the precise estimation of corner 
strength in terms of angles. Instead of using the curvature 
information again, the proposed method validates the corners with 
respect to the geometric structure of the contour. After we detect 
all corner candidates, we try to approximate the angle of each 
corner by fitting two line segments with an iterative least square 
estimation procedure. In Fig. 3, the validation procedure is 
illustrated. We determine a least squares error threshold and try to 
fit lines to the neighbour pixels of the corner candidate until the 
fitting error exceeds the threshold. Thus, all neighbour pixels are 
taken into account and a 2-dimensional geometrical region of 
support is established. 

 

 

                 
 

Figure 3. Illustration of corner validation algorithm. 

Once we determine the previous and next points (Pp and Pn), 
we obtain two vectors V1 and V2 to compute the angle α: 
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Finally, the true corners become more distinguishable among 
the candidates and the ones having an angle wider than Tangle are 
eliminated. Thus a pure geometric validation is achieved in order 
to keep the corners which address the human perception in a better 
way. The steps of the proposed algorithm can now be summarized 
as follows: 

1. Detect the edge segments with Edge Drawing (ED) [21], 
2. Compute the turning angle curvature with image gradients 

at a single scale σ, 
3. Detect the corner candidates with respect to the curvature 

function's local maximas that are greater than a certain 
threshold, 

4. Eliminate the corners which fail the validation test. 
 

3. EXPERIMENTAL RESULTS 
 
In this section we measure the performance of the proposed 
algorithm by comparing its results with two well-known intensity-
based corner detection algorithms; Harris [2] and Shi & Tomasi 
[3], and four contour-based algorithms; CSS [9], ECSS [10], 

Pc: Corner point,  Pp: Previous point,  Pn: Next point 
                 : Least squares line fit iterations, 
                 : Least squares selected line estimation. 
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adaptive threshold CSS (ATCSS) [11] and chord-to-point distance 
accumulation technique (CPDA) [15]. In the experiments, we all 
use the original implementations of the algorithms acquired from 
the authors (for Harris and Shi-Tomasi, OpenCV implementations 
are substituted). We also assess the efficiency of employed 
detectors with two evaluation metrics, i.e. accuracy (ACU) (Eq. 9) 
and localization error (LE) [24]. We substitute a 4-pixel maximum 
displacement (Dmax) in ACU calculations for all detectors.  

2/)//(100 realtruetecteddetrue NNNNACU +×=        (9) 

To compute the accuracy, having test images with the ground 
truths is necessary. Since “what is a corner?” is an ill posed 
question for real images, synthetic images are employed in most 
studies. But also, using only synthetic images lacks from scientific 
methodology. For this reason, we prepared a simple dataset with 
real images such that they have mostly definite corners. We make 
the dataset available online in our webpage also with the 
coordinates of ground truths, and image results of proposed 
method on the prepared dataset [25]. 

Eventually, we perform our experiments with 15 images (7 
synthetic and 9 real) images. Each test image is subjected to 
rotation (-80° to 80°, 16 steps), uniform scaling (0.5 to 2, 15 steps), 
x scaling (0.5 to 2, 15 steps), y scaling (0.5 to 2, 15), and Gaussian 
noise addition (σ = 0 to 0.045, 5 steps) experiments. Thus, each 
algorithm runs 82 times for each test image, hence, total 16 x 82 = 
1312 experiments are performed. We set the algorithms to their 
default parameters indicated in the publications (see Table 1). In 
Fig. 4, we present the experiment results in terms of ACU and LE. 
We also provide the overall results for all experiments in Fig. 5. 
Furthermore, we also provide an online demo in our webpage that 
interested users can test the proposed method with any image [25]. 

Table 1: Employed algorithms and their parameter settings. 
Algorithm Parameters 

Harris (OpenCV) block size: 3, aperture size: 3, k: 0.04 
Shi-Tomasi (OpenCV) block size: 3, aperture size: 3, k: 0.04 
CSS  
(MATLAB) 

sigma: 3, high threshold: 0.35,  
low threshold: 0, gap size: 1 

ECSS  
(MATLAB) 

sigma: 3, high threshold: 0.35,  
low threshold: 0, gap size: 1 

ATCSS  
(MATLAB) 

C: 1.5, Tangle: 162, sigma: 3, 
end points: true, gap size: 1 

CPDA  
(MATLAB) 

high threshold: 0.7,  low threshold: 0.2, 
gap size: 1, end points: true 

Proposed  
(C/C++) 

sigma: 2, curvature threshold: 4,  
angle threshold: 160, line fit thr.: 0.25 

In terms of running time, the proposed algorithm takes a mere 
2.56 msec for 256x256 and 10.47 msec for 512x512 images on a 2 
GHz Intel CPU on the average. The running times include both the 
edge detection and the corner detection by the proposed algorithm. 
Since we already have the image gradients from the edge/contour 
extraction step, a very slight computation burden remains for the 
corner detection scheme. Due to the discrepancies of platforms 
which the algorithms are implemented on (see Table 1); we cannot 
make a fair comparison in terms of running time. Nevertheless, the 
timing results for the proposed algorithm are very competitive 
compared to the ones in the literature to the best of our knowledge. 

4. CONCLUSION 

In this study, we proposed a novel approach for CSS corner 
detection paradigm, which produces promising results and runs in 

real-time. Contrary to the majority of the related studies, we try to 
compute the curvature from the image gradient information instead 
of the pixel locations. Since the gradient information is already 
available from the edge/contour extraction scheme, the algorithm 
runs very fast.   

From the experiments, we see that the proposed curvature 
computation method is more durable against affine 
transformations, i.e. rotation, uniform and non-uniform scaling, etc 
(Fig. 4). The only experiment that our method falls behind is the 
Gaussian noise addition (see Fig. 4.e). We explain this situation as 
a drawback of our parameter selection. To provide better corner 
localization and faster computation; we prefer to convolve the 
gradient series with lower scales of Gaussian functions in narrower 
apertures, (i.e. 1x7 kernel, σ = 2). Therefore, our method suffers 
from ACU results as the noise is increasing due to the insufficient 
noise cancellation; nevertheless, it is still doing fine in terms of LE 
criterion (Fig. 4.k). Another drawback of our algorithm is; it does 
not check for the T-junctions with its current version, however, we 
are planning to improve it by incorporating an additional scheme.  

Besides using the gradient information for curvature 
computation, our method also differentiates itself from the rest by 
employing the new edge detection method, i.e. ED, algorithm for 
contour extraction. With high quality contiguous edges and fast 
execution, ED eases the successful completion of the task. 

As a final contribution, we proposed a novel corner validation 
algorithm which aims to approximate the spatial geometrical 
structure of the edge contour. In other words, we do not use the 
curvature scale space information to validate the contours.  

 

 

Figure 5. Overall results for ACU and LE criterions. 
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Figure 4. Detailed results for the experiments. a - e) ACU plots; f - j) LE plots for rotation, 
uniform scaling, x scaling, y scaling and Gaussian noise, respectively. 
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