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ABSTRACT

We develop a new type of statistical texture image feature,
called a Local Radius Index (LRI), which can be used to quan-
tify texture similarity based on human perception. Image sim-
ilarity metrics based on LRI can be applied to image com-
pression, identical texture retrieval and other related appli-
cations. LRI extracts texture features by using simple pixel
value comparisons in space domain. Better performance can
be achieved when LRI is combined with complementary tex-
ture features, e.g., Local Binary Patterns (LBP) and the pro-
posed Subband Contrast Distribution. Compared with Struc-
tural Texture Similarity Metrics (STSIM), the LRI-based met-
rics achieve better retrieval performance with much less com-
putation. Applied to the recently developed structurally loss-
less image coder, Matched Texture Coding, LRI enables simi-
lar performance while significantly accelerating the encoding.

Index Terms— texture similarity, image coding, retrieval

1. INTRODUCTION

Texture similarity metrics play an important role in many im-
age processing applications. Their goal is to make predictions
consistent with human judgment. Due to the nature of texture,
traditional point-by-point similarity metrics, such as MSE and
PSNR, usually fail, for they are overly sensitive to small dif-
ferences between images. Since textures have repetitive and
statistical behaviors, it is natural that their similarity should
be quantified with metrics based on statistics.

For different applications, texture similarity metrics need
to possess different properties. For instance, texture classifi-
cation needs semantically focused metrics that are shift and
rotation invariant, e.g., metrics based on Local Binary Pat-
terns (LBP) [1], and possibly even scale and viewpoint change
invariant, e.g., [2–4]. However, in other problems such as
image compression and some retrieval problems, the met-
ric should be structural similarity focused, in that shifts can
be tolerated but rotations, scalings and viewpoint changes,
should be penalized monotonically [5–7]. In other retrieval
problems, monotonicity is not required, and it is only neces-
sary that the metric determine if two textures are sufficiently
similar, or identical [6–10]. The Structural Texture Similarity
Metrics STSIM1 [11] and STSIM2 [8, 12] are of this kind.
In identical texture retrieval, STSIM2 has shown the best per-
formance [8, 9]. When applied to image coding, satisfying

results are obtained when STSIM2 is used in the recently
developed structurally lossless image compression method,
Matched Texture Coding (MTC) [13], which is a block-based
image coder that uses the metric to decide if blocks of the im-
age can be encoded by pointing to structurally similar ones in
the already coded region.

In this paper, we focus on the need for texture metrics
that assess the similarity of homogeneous textures in the con-
text of image compression and retrieval where, as mentioned
earlier, changes in rotations, scalings and viewpoints should
be penalized monotonically. This is the domain for which
STSIM type metrics have been developed [6, 8, 9, 14]. With
this in mind, we propose a new type of statistical texture fea-
ture, called a Local Radius Index (LRI), and new texture sim-
ilar metrics based on this feature in combination with other
statistical features, such as LBP. These new metrics are com-
putationally much simpler than STSIM metrics.

We test these new metrics on the problem of identical tex-
ture retrieval, as recently considered in [8, 9], and find that
they outperform all previous metrics, while being computa-
tionally much simpler than the best of such. We also test one
of these metrics in MTC. The results show it attains compa-
rable compression and decoded image quality to that attained
with STSIM2, but significantly accelerates the algorithm.

The rest of paper is organized as follows. The LRI feature
is described in Sec. 2. And Sec. 3 presents new texture simi-
larity metrics based on LRI and other features. Experimental
results are discussed in Sec. 4, and Sec. 5 concludes the paper.

2. LOCAL RADIUS INDEX (LRI) FEATURES

Texture is a unique kind of visual signal and does not have
a widely agreed definition. However, Portilla and Simon-
celli [15] provide a general definition with which we agree:
“Loosely speaking, texture images are spatially homogeneous
and consist of repeated elements, often subject to some ran-
domization in their location, size, color, orientation, etc.”
Generally speaking, a texture contains repetitive smooth re-
gions and transition regions between them, i.e., edges. The
sizes of the smooth regions influence the repetitive structure
of the texture elements and can be captured by considering
edges around them. The distance between two adjacent edges,
which we will refer to as an inter-edge distance, is a good
feature. Due to the stochasticity, the inter-edge distances
are not constant, but there is a distribution of such. Also,
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the inter-edge distance distributions may vary with angle
and such variations can be key to characterizing the texture.
Accordingly, one version of LRI is designed to capture inter-
edge distance distributions in different directions. Similarly,
another version of LRI is designed to capture the distributions
of distances-to-nearest-edges. In particular, we propose two
LRI operators that for each pixel output eight integer direc-
tional indices, each corresponding to one direction. Then for
each direction, a histogram of the corresponding directional
indices is computed. The collection of all eight histograms is
considered an LRI feature vector or statistic for the image.

2.1. LRI-A

For each pixel, consider the eight directions corresponding to
its eight nearest neighbors. For each direction, the LRI-A op-
erator produces an integer index, depending on a threshold T
and a size limit K. In particular, for the ith pixel and direction
d = 1 to 8, the directional index Ii,d is computed as follows:

1. Ii,d = 0 if the absolute difference between the current
pixel and the adjacent one in direction d is less than T .

2. Ii,d = min{j,K} if j > 0 successive pixels in direc-
tion d are greater than the current pixel by at least T ,
and the (j + 1)th pixel is not.

3. Ii,d = max{−j,−K} if j > 0 successive pixels in
direction d are smaller than the current pixel by at least
T , and the (j + 1)th pixel is not.

Fig. 1 illustrates the LRI-A directional indices for several
pixels. Note that Ii,d = 0 means pixel i is not adjacent to an
edge in direction d, whereas Ii,d 6= 0 indicates the presence of
an adjacent edge in direction d and |Ii,d| represents the size
of adjacent texture element. In addition, the sign of (Ii,d)
indicates whether the edge is an increasing or decreasing one.

Of the two parameters involved, the threshold T deter-
mines what is considered an edge and also controls noise sen-
sitivity. Large T makes the LRI-A operator noise insensitive
and only sharp edges are detected. Small T has the opposite
effect. T should be image dependent, and we have found that
for homogeneous textures, choosing it to be proportional to
the standard deviation of the image works well, e.g., T equals
to the standard deviation divided by 2. The size limitK limits
the maximum size of texture elements detected by LRI-A. In
our testing we have found K = 4 is usually large enough.

As suggested earlier, the inter-edge distance distributions
in each direction are captured by computing histograms of the
directional indices in each direction. The LRI feature vector
for an image then consists of these eight histograms.

2.2. LRI-D

Whereas LRI-A captures the width of the Adjacent smooth
region, LRI-D captures the Distance to the nearest edge, i.e.,
to the boundary of the next smooth region. Specifically, the
LRI-D operator calculates directional indices Ii,d for the ith
pixel in direction d = 1 to 8 as follows:

Fig. 1: Examples of LRI-A and LRI-D directional indices

1. Ii,d = min(j,K) mod K, if for some j ≥ 1, j − 1
successive pixels in direction d have absolute difference
with the current pixel less than T , and the jth pixel is
greater than the current pixel by at least T .

2. Ii,d = −(min(j,K) mod K), if for some j ≥ 1, j − 1
successive pixels in direction d have absolute differ-
ence with the current pixel less than T , and jth pixel
is smaller than the current pixel by at least T .

Note that Ii,d 6= 0 indicates the distance between the cur-
rent pixel and the nearest edge in direction d is |Ii,d| and the
sign of (Ii,d) indicates whether the nearest edge is an increas-
ing or decreasing one; Ii,d = 0 means the distance between
the current pixel and the nearest edge in direction d is more
than K. Fig. 1 illustrates the LRI-D directional indices for
several pixels. The roles of T and K in LRI-D are similar to
those in LRI-A. And as with LRI-A, the feature output is the
collection of directional index histograms.

To accentuate the difference between LRI-A and LRI-D,
consider their respective indices in direction d as one traverses
a smooth region along a line with direction d from one of its
boundaries to the next. Notice that the LRI-A indices are all
zero, except for the last, corresponding to the pixel adjacent to
the second boundary, whereas the LRI-D indices count down
the distance to the second boundary. As a result, LRI-A in-
dices are sparser, and LRI-D indices contain nonzero redun-
dant information. Another viewpoint is that LRI-A focuses
on representing size information of texture elements, whereas
LRI-D concentrates on distance to adjacent texture elements.

2.3. Fast LRI algorithm

Computing the output of either LRI operator by directly using
the definitions in Sec. 2.1 and 2.2 is fairly simple, as it only
involves comparing the current pixel with its eight neighbors.
Specifically, it requires up to 8K such comparisons per pixel.
Nevertheless, it can be reduced to approximately 4K per pixel
by exploiting the fact that the comparison between any pair
of pixels is used twice, once for each pixel. In particular, for
each of the four unsigned directions d, namely horizontal, ver-
tical, diagonal and anti-diagonal directions, and each distance
k = 1 toK, one can precalculate differences between all pairs
of pixels separated by k in direction d and store such as pixel
difference images. For instance, for the horizontal direction,
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one can calculate differences of every two pixels in the same
line separated by k: ∆k

m,n = xm,n − xm,n+k , where for an
N ×N image, 1 ≤ m ≤ N and 1 ≤ n ≤ N − k. Such com-
putations can be viewed as filtering operations, with a total of
4K filters, namely, K in each of the four unsigned directions.
For example, the magnitude of the frequency responses for
the K filters in the horizontal direction has the form:

|Hk(ωX , ωY )| = 2− 2 cos(kωY ), k = 1, 2...,K .

Although not orthogonal, such filters differ in orientation and
scale. As we will see, the outputs of these filters can be also
used to speed the computation of another useful feature.

3. LRI-BASED TEXTURE SIMILARITY METRICS

This section first describes a texture similarity metric based
purely on an LRI feature, and then proposes better metrics
that combine LRI with complementary texture features.

3.1. A Purely LRI-based Similarity Metric

A similarity metric based purely on LRI can be easily derived.
First concatenate the eight histograms to form an 8×(2K+1)
dimensional vector and normalize it to unit length. Then com-
pare the similarity of the vectors obtained from two different
images using information theoretic divergence [16]. The re-
sulting similarity score has non-negative values, with 0 mean-
ing identical, and a small metric value meaning similar.

3.2. Local Binary Patterns (LBP)

LBP [1] is a widely used feature in texture analysis. Whereas
LRI extracts features in eight radial directions without consid-
ering their correlations, LBP, on the contrary, detects patterns
in the tangential direction, which is complementary to LRI.
Hence, better metric performance can be expected if LRI and
LBP are combined. Unlike the original version of LBP, we
propose to compute LBP using the surrounding 8 pixels with-
out doing interpolation to estimate image values on a circle
surrounding the current pixel. From experiments, we found
that such interpolation does not improve overall performance.
Since pixel differences are already computed when LRI is
computed, when interpolation is not required, virtually no ad-
ditional computation is needed to compute LBP indices.

3.3. Subband Contrast Distribution (SCD)

Subband decompositions oriented to visual perception have
been quite central to CW-SSIM [17] and STSIM [8, 11, 12]
metrics. We find that the variances in each subband, which
indicate subband contrasts, suffices to provide useful comple-
mentary statistics to LRI, which by itself is contrast invariant.

Specifically, we propose two closely related features that
we collectively refer to as Subband Contrast Distribution.
The first applies a real steerable pyramid decomposition [15]
with 3 scales and 4 orientations, similar to what is used in
CW-SSIM and STSIM. The resulting feature is the vector

(σ2
1 , . . . , σ

2
12) of 12 subband variances. The similarity of the

SCD vectors from two different images, x and y, is assessed
using the approach taken in SSIM type metrics [17, 18] :

SCD(x, y) =

12∏
r=1

2σx,rσy,r + C

σ2
x,r + σ2

y,r + C

where σ2
x,r, σ

2
y,r denotes the variance of the rth subband of

x and y, respectively. As such, SCD(x, y) ranges from 0 to
1, with 1 indicating identical. Multiplicatively combining all
terms has the interpretation that only when all subbands have
similar contrasts can SCD have a high value. C is a small pos-
itive constant that prevents the denominator from being zero
and improves robustness when subbands have small energy.
Typically, C = 10, when images take values from 0 to 255.

The second approach makes use of the pixel difference
images, produced by the fast LRI algorithm. As mentioned
previously, these are filtered versions of an image, with dif-
fering orientations and scales. As such, they can be used in
place of the steerable pyramid decomposition. The statistic
formation and similarity scoring formula are the same as be-
fore. To distinguish this approach from the previous, it will
be called estimated SCD or SCDEST; it needs no significant
additional computations beyond those required for LRI.

3.4. Intensity Penalization (IP)

Besides texture patterns and contrast, intensity can also influ-
ence human similarity judgment. To penalize large intensity
difference, we propose the following penalization function:

IP(x, y) =
[

max
(
TL,

∣∣Ix − Iy∣∣) /256
]pL

, TL = 10, pL = 2,

where Ix and Iy are mean values of images x and y, TL serves
as a kind of just noticeable intensity difference, and pL deter-
mines the severity of penalization. The denominator 256 is
chosen presuming images with pixel intensities ranging from
0 to 255. A smaller value would cause less penalization.

3.5. LRI-based Similarity Metric

After experimenting with a number of ways of combining LRI
with complementary features, we propose the following met-
ric combining LRI with LBP, SCD (or SCDEST) and IP:

LRI+ = LRIp1 × LBPp2 × f(1− SCD)p3 × IP ,

where LRI+ is the metric value and f(x) is an increasing
function of x on [0, 1]. We use f(x) = tan(xπ2 ), but also
experimented with f(x) = x. Parameters p1, p2, p3 weight
the different features, with typical values 1, 1.1 and 1.2.

LRI+ is nonnegative, with 0 meaning identical, and a
small metric value meaning similar. Since the values of LRI+

are often close to 0, for convenience, we usually report the
logarithm of LRI+. As a benchmark, we have found that
log10 LRI+ = −6 indicates very similar textures.

Computational complexity
An LRI-based metric requires many fewer computations
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than STSIM2. Leaving aside transform costs, STSIM2 (with
a global window) requires approximately 500 operations per
pixel, whereas LRI and SCD require 16 and 36, respectively.
Of course both STSIM2 and SCD require the steerable pyra-
mid decomposition, the computation of which requires 14
FFT, each requiring 5 logN operations per pixel for images
with N pixels [19]. However, when SCDEST is applied in-
stead of SCD, such transform costs can be reduced.

4. TESTS OF THE METRICS

4.1. Identical Texture Retrieval
One important test of a metric is its ability to distinguish iden-
tical from nonidentical textures. To make such a test we adopt
the identical texture retrieval setup of [8, 9]. This includes
a database of 1181 images carefully cropped from 485 pho-
tographs [20], chosen to have homogeneous textures. Images
are considered to be identical if and only if they were cropped
from the same photograph. One benefit of this setup is that
subjective experiment is not needed to establish ground truth.

For a given metric, the retrieval test is conducted as fol-
lows. Each image in the database serves as a query, and for
each query, all other images are ordered according to their
similarity to the query, as measured by the given metric. The
goodness of the metric is then judged by how high in the or-
dering the images identical to the query typically appear. As
in [8, 9], we consider four retrieval performance measures:
Precision at 1 (P@1) [8], Mean Reciprocal Rank (MRR) [21],
Mean Average Precision (MAP) [22] and the Area Under the
Receiver Operating Characteristic (AUROC) [8]. While the
first three measure the ability of the metric to correctly rank
similarity of other images to a query, they do not test whether
a metric value indicating identicality of a texture y to a texture
x is the same for all x. The latter is tested by AUROC.

Test results are shown in Table 1 for several LRI-based
metrics, as well as the results reported in [8] for the following
metrics: SSIM [18], CW-SSIM [17], LBP [1] and STSIM2
[8,12]. The LRI-based metrics include, LRI-A, LRI-D, LRI+a
(LRI-A, LBP, SCD, IP), LRI+b (LRI-A, LBP, SCDEST, IP) and
LRI+c (LRI-D, LBP, SCD, IP). The results show that the three
versions of LRI+ perform better than all other metrics, with
STSIM2 not far behind. It is interesting that while LRI-D by
itself is not as good as LRI-A by itself, when combined with
the other features, it works just as well, as the others compen-
sate for its shortcomings. It is also interesting that the perfor-
mance of the LRI+b is so similar to that of LRI+a and LRI+c .
This shows that substituting the low complexity SCDEST for
SCD has little effect on performance. Also note that LRI-A,
LRI-D and SCD are surprisingly good in AUROC.

4.2. Structurally Lossless Image Coding Experiment
Another test of a metric is its ability to be used in MTC [13] to
judge if an image block can be satisfactorily coded by point-
ing to some candidate block from the already coded portion
of the image. Accordingly, we found that MTC performance

Table 1: Identical texture retrieval tests.
Metrics P@1 MRR MAP AUROC

SSIM [8] 9% 11% 6% 0.45
CW-SSIM [8] 39% 46% 40% 0.92

LBP [8] 90% 92% 86% 0.59
STSIM2 [8] 96% 97% 92% 0.98

LRI-A 91.8% 93.5% 86.9% 0.982
LRI-D 83.2% 86.9% 78.8% 0.974
SCD 83.7% 88.0% 80.5% 0.984
LRI+a 98.7% 99.2% 96.4% 0.994
LRI+b 98.1% 98.7% 95.4% 0.994
LRI+c 99.0% 99.2% 96.3% 0.994

was at least as good with LRI+b as with STSIM2. For exam-
ple, Fig. 2 shows the “waterfall” image MTC coded at a very
low coding rate, 0.18 bpp, with both metrics. One can see that
the two metrics result in very similar quality. However, the
latter runs 6.3 times faster for this example. As an additional
benchmark Fig. 2 also shows the image coded with JPEG at
the same rate. For much of the image, JPEG evidences block-
ing artifacts and MTC is clearly better. However, MTC has a
few flaws, such as eliminating one or two “floats” in the water.

5. CONCLUSION

A new type of texture feature, LRI, and metrics based on it
are proposed. LRI is a simple to compute feature that en-
ables the improvement of texture similarity metrics. Com-
pared to STSIM2, the LRI-based metrics are much simpler
with better performance when tested on the same database.
And when used in MTC, an LRI-based metric obtains similar
performance while significantly accelerating the encoding.

Original image:1024×1024 JPEG coded image

MTC with STSIM2 MTC with LRI-based metric
Fig. 2: Example of “waterfall” image coded at 0.18 bpp
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