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ABSTRACT 

 

In this paper, we present a novel single image super-resolution 
method. To simultaneously improve the resolution and 
perceptual image quality, we bring forward a practical solution 
combining manifold regularization and sparse support 
regression. The main contribution of this paper is twofold. 
Firstly, a mapping function from low resolution (LR) patches to 
high-resolution (HR) patches will be learned by a local 
regression algorithm called sparse support regression, which can 
be constructed from the support bases of the LR-HR dictionary. 
Secondly, we propose to preserve the geometrical structure of the 
image patch dictionary, which is critical for reducing the artifacts 
and obtaining better visual quality. Experimental results 
demonstrate that the proposed method produces high quality 
results both quantitatively and perceptually. 

Index Terms—image enhancement, super-resolution, support 
regression, manifold learning, sparse representation. 

1. INTRODUCTION 
 

With the development of computer network and the rapid 
progress in hand-held photographic mobile devices, images and 
videos are becoming more and more popular on the web, due to 
their rich content and easy perception. However, limited by the 
network bandwidth and server storage, most images exist as low 
resolution (LR) and low quality versions degraded from the 
source. There is a huge need for improving the perceptual image 
quality, among which the resolution enhancement technology is 
called super-resolution. Instead of imposing higher requirements 
on hardware devices and sensors, it can offer us high-resolution 
(HR) and high-quality images with more details economically. In 
this paper, we focus on the Single Image Super-Resolution (SISR) 
problem because of its potential usefulness and flexibility for 
different applications. 

Since SISR is inherently ill-posed as there are generally 
multiple HR images corresponding to the same LR image, 
accordingly, one has to rely on strong prior information, which is 
available either in the explicit form of a distribution or energy 
functional (e.g.., Tikhonov regularization [1] and Total Variation 
regularization [2]), and/or in the implicit form of training images 
which leads to learning-based super-resolution. A few 
representative methods of such kind are summarized as follows. 

A manifold assumption based on Locally Linear Embedding 
(LLE) [3] is proposed by Chang et al. [4], and they assume that 
image patches in LR patch space and the corresponding HR one 
are located at two similar local geometries, and the HR patch 
could be generated as a linear combination of its K neighbor HR 
patches found in the training database. Recently, in [5] and [6], 

Yang et al. employ sparse coding to perform image 
super-resolution, which enforces corresponding LR and HR 
patches to share the same sparse representations. In their works, 
by enforcing sparsity regularization, LR patches are coded with 
respect to an over-complete LR dictionary, and the coefficients 
(i.e., the outcome of the sparse coding process) are obtained to 
linearly combine corresponding HR counterparts to perform 
image super-resolution reconstruction. However, the constraint 
of “same sparse representation” in their approach is too strong to 
achieve in practice [7].  

In this paper, we present a manifold regularized regression 
framework for super-resolution as shown in Fig. 1. The “same 
sparse representation” is relaxed for LR-HR sparse support 
domain regression, which is flexible in using the information of 
local training samples. Note that image patches have regular 
structures where accurate estimation of pixel values via 
regression is possible. Accordingly, the proposed method has 
more power and flexibility to describe different image patterns. 
In addition, the proposed method simultaneously considers the 
manifold regularization, thus capturing the intrinsic geometrical 
structure of the dictionary. 

 
2. PROPOSED MANIFOLD REGULARIZED SPARSE 

SUPPORT REGRESSION METHOD FOR 
SUPER-RESOLUTION 

 

This section presents the formulation of the proposed 
Manifold regularized Sparse Support Regression (MSSRt) for 
super-resolution. It then describes the optimization algorithm. 

2.1. Formulation 

Given a set of LR and HR training image patch pairs, 

1 1
{( , ), ,( , )} d D

N N
x y x y     , d  and D are the 

dimensions of one LR and one HR patch respectively. Define 

1
[ , , ]

N
X x x   and 

1
[ , , ]

N
Y y y  , each column of which is 

a patch sample. Thus the matrixes X  and Y  can be viewed as 
the LR and HR patch dictionaries respectively. 

Considering that the manifold assumption (two manifolds 
spanned by the feature spaces of the LR and HR patches are 
locally similar) may not be tenable, we learn a much more stable 
LR-HR mapping in the support domain for super-resolution. 
Thus it can be transformed to a regression problem. 

Our another important goal is to encode the geometry of the 
HR patch manifold, which is much more credible and 
discriminated compared with that of the LR one [13], and 
preserve the geometry for the reconstructed HR patch space. This 
will ensure that the local geometric structure of the reconstructed 
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HR patch manifold is consistent with that of the original HR one. 

Based on the above discussions, our MSSR algorithm for 
image super-resolution should be equipped with two properties:  

i) The shared support of each LR patch and HR patch has an 
explicit regression relationship;  

ii) The local geometrical information on the original HR 
patch dictionary is preserved. 

In the following part, we will describe how we formulate 
MSSR with these two desired properties. 

2.2. Sparse Support Regression 

Instead of assuming that each pair of HR and LR patches has the 
same sparse representation, in our proposed MSSR method, this 
strong regularization of “same sparse representation” is relaxed 
for sparse support regression, and the sparse coefficient vectors 
of one LR and HR patch pair share the “same support”, i.e., the 
same indices of nonzero elements.  

Given a set of LR and HR training patches (dictionary pairs), 

1 1
{( , ), ,( , )}

N N
x y x y , for an unseen LR patch 

t
x , we try to 

learn a mapping function ( , )f x P Px , from the LR patch to 
the HR one to minimize the following regularized cost function 
for the regression 

22( ) ( )
i i H

i S

P Px y P 


   ,   (1) 

where   is a regularization parameter, P  is a D d  matrix 

to be learned, 2

H
P  is the induced norm of f  in the 

reproducing kernel Hilbert space (RKHS) space H , and S  is 
the support of the coding coefficients ̂  of the unseen patch 

t
x  on LR training patches X : 

12 1
ˆ argmin

t
x X


      .  (2) 

Thus, ˆsupport( )S . In Eq. (2), 
1

 denotes the 
1
 norm of 

 , and the parameter 
1

  balances the coding error of 
t
x  and 

the sparsity of  . The solution of Eq. (2) can be achieved by 
convex optimization methods referring to [9]. 

The support of one vector is referring to the indices of nonzero 
elements in the vector. Defining 

S
X  and 

S
Y  as 

 |
S i

X x i S   and  |
S i
Y y i S   respectively and 

using Fibonacci norm to represent the smoothness of H , we can 
rewrite Eq. (1) as the following matrix form: 

2 2
( )

S S F F
P PX Y P    .   (3) 

2.3. Mining the Geometry on HR Patch Dictionary 

This section targets on the second property, which is to preserve 
the local geometrical information on the HR patch dictionary. 
Note that the neighborhood relation, which guides the 
formulation of sparseness, is defined on the manifold rather than 
the Euclidean space. 

Researchers have proposed various methods to measure the 
similarity between data points [10, 11], e.g., pair-wise distance 
based similarity and reconstruction coefficient based similarity. 
Since the former is suitable for discriminant analysis problems, 
such as recognition and clustering. Alternatively, reconstruction 
coefficient based similarity is datum-adaptive, and thus more 
suitable for image super-resolution. LLE is one of the 
representative works for reconstruction coefficient similarity 
estimation. It calculates the coefficient for each data through 
-NNk searching, thus k  sparsity. The performance of LLE 

graph will decrease rapidly when the datas are non-uniformly 
sampled from underlying manifold, and this situation is very 
common in practice. 

Recently, some researchers have demonstrated that the sparse 
structure of one manifold can be explored by the 

1
  graph [11], 

resulting in many benefits for machine learning and image 
processing problem. Let 

i
y  be the i -th HR patch , which is 

under consideration now. We want to identify its neighbors on 
the smooth manifold rather than the entire Euclidean space. On 
the smooth patch manifold space, the patch can be well sparsely 
approximated by a linear combination of a few nearby patches. 
Thus, it has a sparse representation over the support domain 

S
Y . 

For any HR patch iy , it can be sparsely approximate by the 

data matrix 
S
Y  except 

i
y : 

22 1
ˆ argmin ,

s.t. 0
i

i i S i i
W

ii

W y Y W W

W

  




  
, (4) 

where 
i

W  denotes the i -the column of the matrix W whose 

diagonal elements are zeros, and 2  is the parameter balancing 

the coding error of 
i
y  and the sparsity of 

i
W .  

 
Fig. 1. Flowchart of the proposed method. Note that the red patches denote the sparse support domain of the input LR patch on the 
dictionary, and we use the sparse graph of the HR sparse support domain to guide the construction of the mapping function. 
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2.4. MSSR Objective Function and Optimization 

We preserve the geometry relation represented by W  for the 
reconstructed HR patch manifold. When LR patch is transformed 
to the HR patch, we try to preserve geometry constraint from W  
for ( , )

S
f X P . It can be gained by minimizing 

2 2 2

2
( ) ,i S i S S SF F

i S

Px PX W PX PX W PX I W


     
 (5) 

where I  is an identity matrix. 

Considering both of the two properties we want to engage, the 
objective function of our proposed MSSR is defined as: 

2 2 2
( )

MSSR S S SF F F
O PX Y P PX I W      , (6) 

where   is a regularization parameter. 

Using matrix properties ( ) ( )tr AB tr BA , 2
( )TA tr AA , 

and ( ) ( )Ttr A tr A , we have 

 ( )( ) ( )

( ( )( ) )

( )

( ) ( ),

T T
MSSR S S S S

T T T
S S
T T T T T T

S S S S S S S S
T T T

S S

O tr PX Y PX Y tr PP

tr PX I W I W X P

tr PX X P PX Y Y X P Y Y

tr PP tr PX GX P





 

   

  

   

 

   (7) 

where ( )( )TG I W I W   . 

In order to minimize the objective Eq. (7), we would like to 
take the derivative of 

MSSR
O  with respect to P  and set it to 

zero, i.e., we have the following equation 

1

2 2 2 2 0

( )

( ) .

T T TMSSR
S S S S S S

T T T
S S S S S S

T T T
S S S S S S

O
PX X Y X P PX GX

P
P X X I X GX Y X

P Y X X X I X GX

 

 

  


    


   

   

  (8) 

Following [6], we perform a back projection for the 
super-resolved HR image of the proposed MSSR method to 
satisfy the global reconstruction constraint. 

 
3. RELATION TO PRIOR WORK 

 

Note that our method is similar to the Local Learning based 
Regression (LLR) method proposed in [8], which is also trying to 
learn a mapping between LR and HR patches. However, there are 
essential differences between LLR and the proposed method:  

i) LLR learns the LR-HR mapping in the local space of K 
nearest neighbors, which uses a fixed number of nearest 
neighbors through the feature space, while the proposed method 
adaptively selects the neighbors without any predefined 
neighborhood size, and reveals the mapping relationship between 
the LR and HR patch in the sparse support domains; 

ii) LLR does not take into account the geometric structure of 
the patch manifold that plays an important role in the choice of 
example patches, while the proposed method aims to preserve 
the geometric structure of the original HR patch manifold space 
for that of the reconstructed HR one, thus well revealing the 
similar local geometric structure manifold of LR and HR patch 
spaces and enhancing the learning performance. 

4. EXPERIMENTAL RESULTS 

 

In this section, we verify the performance of the proposed MSSR 
method. We conduct experiments on five widely used test images 
as shown in Fig. 2. Several state-of-the-art methods, such as 
Bicubic interpolation, Neighbor Embedding (NE) [4], Sparse 
Coding (SC) [6], and Local Learning based Regression (LLR) [8] 
are used as comparison baselines. Peak Signal to Noise Ratio 
(PSNR), Root Mean Square Error (RMSE), and Structural 
Similarity (SSIM) [12] indices are adopted to evaluate the 
objective quality of the super-resolved results. Since human eyes 
are more sensible to the change of the luminance, hence, the 
super-resolution reconstruction is only performed on the 
luminance component, and the simple Bicubic interpolator is 
used for the chromatic components. 

 
Fig. 2. Gallery of test images used in our experiments. From left 
to right, they are named “barbara”, “foreman”, “house”, “lenna”, 
and “zebra” respectively. 
 

To extract the high frequency information of LR images, 4 
directions of gradients (2 horizontal directions and 2 vertical 
directions) are used as input features in all super-resolution 
algorithms. In the following experiments, the magnification 
factor is 3, the size of the LR patches is set to 3 × 3, and the size 
of HR patches is set to 9 × 9. 50,000 LR and HR training patch 
pairs are randomly chosen from the training images used in [6], 
which has no relation with the test images used in our 
experiments, for training neighbor embedding [4] and local 
learning [8] and the coupled dictionaries with 1024 elements [6] 
respectively. The neighborhood number of NE [4] is set to 10 and 
the sparsity parameter of SC is set to 0.1. For the sake of fairness, 
we use the some trained dictionary for SC [6] and MSSR.  For 
MSSR, the regularization parameters 

1
 , 

2
 ,   and   are 

empirically set to 0.1 , 0.15, 0.3 and 10 respectively. 
The PSNR (dB), RMSE and SSIM of all five different test 

images are reported in Table I. It can be seen from Table I that 
the proposed MSSR method achieves the best in terms of PSNR, 
RMSE and SSIM. MSSR outperforms Bicubic interpolation, NE 
[4], SC [6], and LLR [8] in all cases, which validates the 
necessity and effectivity of sparse support regression and 
manifold geometric preservation. 

Fig. 3 shows the visual results of different super-resolution 
algorithms. All of the learning-based super-resolution methods 
outperformed the Bicubic interpolation in terms of visual 
plausibility. Note that the proposed algorithm performs visually 
much better than Bicubic interpolation, having less visual 
artifacts and producing sharper results. Compared with other 
learning-based super-resolution methods, the proposed algorithm 
provides more image details with improved objective values. The 
results of NE [4] method are sharp in the textures. However, 
unpleasant artifacts and tiny block effects are also introduced as 
shown in “foreman” and “lenna”. SC [6] method uses the 
sparseness prior to regularize the HR image, which suppresses 
the high frequency details in the texture region but introduces 
some noise as shown in “barbara”, “house”, and “zebra” images. 
This is mainly due to the difficulty to learn a universal coupled 
LR and HR dictionary that can represent various LR and HR 
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structure pairs. The result of locality prior method (LLR [8]) 
shown in the fifth column is sharp along salient edges. However, 
the texture detail is blurry and there are some jaggy artifacts and 
ringing artifacts. Our result in the sixth column is sharp both 

along edges and in the textural regions. We owe the superiority 
of the proposed method to manifold constrained local sparse 
regression, which is more powerful and flexible to describe 
different image patterns. 

 

(a)  

(b)  

(c)  

(d)  

(e)  
    

Fig. 3. Super-resolution results of different methods. (a)-(e) are the local magnification of “barbara”, “foreman”, “house”, “lenna” and 
“zebra”  respectively. 

 
 

Table I. PSNR (dB), RMSE, and SSIM comparisons of different 
super-resolution methods. 

 

Images Bicubic NE [4] SC [6] LLR [8] MSSR 

 26.20  26.49  26.31  26.51  26.58  
barbara 12.49  12.08  12.33  12.05  11.96  

 0.7543  0.7651  0.7689  0.7751  0.7810  
  29.64  29.84  30.59  30.55  31.00  

foreman 8.41  8.21  7.54  7.57  7.19  
 0.9022  0.8874  0.9096  0.9083  0.9211  

  29.54  29.70  30.33  30.25  30.60  
house 8.51  8.35  7.77  7.83  7.53  

 0.8564  0.8529  0.8586  0.8633  0.8756  
  31.73  31.75  32.85  32.66  33.07  

lenna 6.61  6.59  5.81  5.93  5.66  
 0.8587  0.8555  0.8710  0.8710  0.8782  

  26.69  27.31  28.06  28.08  28.49  
zebra 11.80  10.99  10.08  10.05  9.60  

 0.7946  0.8210  0.8250  0.8318  0.8417  
  28.76  29.02  29.63  29.61  29.95  

Average 9.56  9.24  8.70  8.69  8.39  
 0.8332  0.8364  0.8466  0.8499  0.8595  

 
Improve- 

ment 

1.19 0.93 0.32 0.34 — 
1.17 0.85 0.31 0.30 — 

0.0263 0.0231 0.0129 0.0096 — 

5. MAIN FINDINGS AND FUTURE DIRECTIONS 
 
This paper propose a novel single image super-resolution method, 
namely Manifold regularized Sparse Support Regression 
(MSSR), which simultaneously considers the manifold 
geometrical structure of the patch manifold space and the support 
of the corresponding sparse coefficients. The support information 
as well as the geometrical structure information of the data 
manifold are incorporated into the MSSR model. We design a 
novel sparse regression algorithm for having both reconstruction 
and generalization properties, which can enhance the learning 
performance. It is experimentally shown that the proposed MSSR 
methods can produce more faithful details and higher objective 
quality in comparison to the other state-of-the-art 
super-resolution approaches. Extending the current linear model 
to the non-linear case will be our further work. In addition, we 
may introduce some reasonable prior [14, 15, 16] to suppress the 
artifact of the super-resolved image. 
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