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ABSTRACT

The use of time-of-flight sensors enables the record of full-
frame depth maps at video frame rate, which benefits a variety
of 3D image or video processing applications. However, such
depth maps are typically corrupted by noise and with limited
resolution. In this paper, we present a learning-based depth
map super-resolution framework by solving a MRF labeling
optimization problem. With the captured depth map and the
associated high-resolution color image, our proposed method
exhibits the capability of preserving the edges of range data
while suppressing the artifacts of texture copying due to color
discontinuities. Quantitative and qualitative experimental re-
sults demonstrate the effectiveness and robustness of our ap-
proach over prior depth map upsampling works.

Index Terms— Depth Map Super-Resolution, Time-of-
Flight (ToF) Sensors, Markov Random Field (MRF)

1. INTRODUCTION

In many 3D image or video processing applications, it is crit-
ical to estimate the range data such as depth map for recon-
struction or synthesis purposes. Typically, one can produce
depth maps either by stereoscopic matching, or using data
captured by laser or range sensors. For stereoscopic match-
ing, one requires multiple slightly displaced color images cap-
tured by different cameras for determining the disparity be-
tween them. However, such matching schemes might fail if
image regions are occluded or without explicit texture infor-
mation. While laser scanning allows one to accurately recon-
struct depth information of a single scene, its cost and limita-
tion to static scenes would not be preferable if 3D video pro-
cessing becomes necessary. On the other hand, range sensors
(i.e., depth cameras) are able to capture depth information at
video rate in dynamic scenes. Such cameras typically emit
infrared light and record the travel time of reflection from
any object points, and thus they are called time-of-flight (ToF)
sensors/cameras.

Unfortunately, depth maps captured by ToF cameras are
usually with lower resolution than those of the correspond-
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ing color images. Moreover, random noise is typically pre-
sented during data acquisition due to both intrinsic physical
constraints and extrinsic environmental interference, which
produces disturbing artifacts for the resulting range data .

To address the above problem, depth map upsampling or
super-resolution (SR) aims at improving the quality or res-
olution of the observed range data, using a registered high-
resolution (HR) color image. For example, with the recently
developed bilateral filtering techniques [1], Kopf et al. [2]
proposed a joint bilateral upsampling framework for upsam-
pling the depth map while preserving the edges observed from
the associated HR color image. Yang et al. [3] also advanced
joint bilateral filtering with depth hypothesis for iteratively
refining the HR depth map. Although promising results were
reported, color images might produce false discontinuities in
range due to color or lighting variations, which would infer
incorrect range results for the above methods.

Different from filtering based approaches, Diebel and
Thrun approached the task of depth map SR as solving a
multi-labeling optimization problem using Markov Random
Fields (MRF) [4]. In recent works like [5, 6], improved depth
map SR estimates were obtained by focusing on depth discon-
tinuities when solving MRF. Nevertheless, since the above
works did not particularly model the difference between color
and edge discontinuities, artifacts due to texture copying tend
to be presented in the above estimated outputs.

In our work, we propose a novel MRF-based depth map
SR framework. The proposed framework not only provides
a more effective way in modeling the data and smoothness
MRF energy functions when predicting the range outputs, we
further incorporate a weighting scheme which observes and
fuses color and depth continuities and thus suppresses tex-
ture copying artifacts. Our experiments will later confirm
that our method outperforms state-of-the-art depth map SR
approaches on a variety of depth images.

2. MRF FOR DEPTH MAP SUPER-RESOLUTION

A Markov Random Field (MRF) is a graphical model describ-
ing a joint probability distribution. It consists of an undirected
graph model (see Figure 1 for example) in which each node
indicates a random variable and the edges determine the as-
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Fig. 1. MRF for depth map super-resolution.

sociated conditional dependencies. MRFs have been widely
employed for several image processing tasks such as image
segmentation and SR. Recently, this technique is also utilized
to solve depth image SR problems [5, 6].

As depicted in Figure 1, MRF approaches depth map SR
as solving a multi-labeling optimization problem. The input
to the MRF consists of two set of variables: HR image pixels
I and LR depth map D. More precisely, each red circle node
in Figure 1, Ip, represents the pth pixel of the HR color image.
On the other hand, each purple square node Dp denotes the
observed LR range data for the pth pixel. The yellow circles
dp indicate the recovered HR depth map which have the same
resolution as the HR color image does. The auxiliary nodes
for image gradient and depth discontinuity leverage texture
and depth information for upsampling the depth map.

According to the Hammersely-Clifford theorem [7], solv-
ing MRF is equivalent to optimizing the Gibbs energy func-
tion, whose general formulation is defined as follows:

E(L) =
∑
p∈P

U (dp, Dp) + λs
∑
p,q∈N

V (dp, dq) , (1)

where L = {Lp|p ∈ P} indicates the label set of the recon-
structed HR depth map, andN is the set of neighboring pixels
for the pth pixel. U (dp, Dp) is called the data term and indi-
cates the compatibility of the labeling with the given data, that
is, the compatibility between the reconstructed depth value
and the initial observed depth value. V (dp, dq) is called the
smoothness term which incorporates the notion of a piecewise
smooth world and penalizes assignments that label neighbor-
ing nodes differently. Finally, the parameter, λs, is used to
balance the data term and smoothness term. In this paper, we
employ graph cut optimization algorithm proposed by Veksler
et al. [8] to minimize this posterior energy function.

3. PROPOSED MRF FORMULATION

The performance of MRF-based depth map SR relies on the
construction of its data term U and the smoothness term V
in (1), and several distance measures have been investigated
in recent works for addressing this problem. For example,
Diebel and Thrun [4] considered quadratic distances, which
penalizes the estimation error but results in blurring effects
near depth discontinuity regions. Lu et al. [5] proposed a

Fig. 2. Three candidate exponential functions. Note that the
upper bound is 32 in this example.

truncated absolute difference (TAD) as their distance mea-
sure, which has been shown to well preserve the depth dis-
continuities. However, in addition to non-differentiability, the
use of truncated functions requires users to fine-tune the trun-
cating thresholds. In other words, its performance will be
sensitive to the choice of such thresholds which are expected
to be significantly dependent on the image content [5].

To tackle the above issues, we propose to apply exponential-
type functions for determining the data and smoothness terms.
We will show that this choice not only better characterizes
image and depth discontinuities, texture-copying artifacts will
be also alleviated with a proposed texture-aware weighting
scheme. We now detail our proposed MRF formulation.

3.1. Determinations of Data and Smoothness Terms

In our work, we advance exponential-type functions to sup-
press the influence of outliers (i.e., extreme estimation errors),
which avoids the problems of non-differentiability and sensi-
tiveness to the parameter choices as the method of TAD did.
We consider three candidate functions in the exponential fam-
ily: basic exponential function, error function, and sigmoid
function, which are shown in Figure 2. It can be seen that
exponential-type functions increase asymptotically toward an
upper-bound as the input x increases. We observe that both
basic exponential and error functions magnify the label dif-
ference x when it approaches 0, but the sigmoid function sup-
presses such a difference instead.

As suggested in [9, 10], it is preferable to quantize the la-
bel estimation difference when solving image synthesis prob-
lems. When upsampling the depth map near image/depth
discontinuity regions, it is inevitably to have a large number
of estimated depth map outputs which are slightly different
from the ground-truth ones. As a result, it would be desir-
able to suppress such errors unless they occur exactly along
the edges. Hence a function that suppresses the label differ-
ence when it is small is a better choice in this case. Based on
the above observations, we select sigmoid functions for pe-
nalizing the label differences in our MRF-based depth map
SR framework. More precisely, we determine the data and
smoothness terms as follows:
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Fig. 3. An example of texture-copying artifacts in a part of the
image Venus. (a) Color image, (b) ground-truth depth map,
(c) depth map estimated by Lu et al. [5], and (d) our result.
The up-sampling factor is 4.

U (dp, Dp) = 1−
(

1

1 + exp (µ (|dp −Dp| − tx))

)
− ty, (2)

V (dp, dq) = ωp,q

(
1−

(
1

1 + exp (µ (|dp − dq| − tx))

)
− ty

)
,

(3)

where µ controls the slope of the sigmoid function, ωp,q is a
weighting constraint for alleviating the texture-copying arti-
facts (discussed later in Section 3.2), and (tx,ty) are the off-
sets to adjust the error cost to be zero when there is no label
estimation error.

3.2. Texture-Aware Scheme for Weighting Constraint

In MRF, the smoothness term V calculates the negative log
likelihood of the prior and is used to penalize regularity vi-
olations. We determine this term in (3), which preserves the
consistency of the estimated depth output close to each other,
while taking the image/depth discontinuity into consideration
by a weight constraint wp,q . We note that, while prior meth-
ods [4, 5] typically assumed that the color edges are consis-
tent with the depth discontinuities. However, this might not
always hold as examples illustrated in Figure 3. Comparing
Figure 3(a) and (b), it is clear that regions with the same depth
might possess different colors. Texture-copying artifacts will
be produced if not properly handling image and depth dis-
continuity during depth map SR (as shown in Figure 3(c)).
To address this issue, we first evaluate the discontinuity level
of depth map for each pixel and determine the value of wp,q

accordingly. To be more particular, we calculate the range
information of a pixel p around its neighbors by:

Prange = max
p∈Wp

(p)− min
p∈Wp

(p), (4)

where Wp is the reference window centered at p. The binary
map is hence obtained by:

Pedge =

{
0 , Prange ≤ σ
1 , Prange > σ,

(5)

where σ is a pre-defined threshold depending on the scale
of depth variations. Afterward, this binary map is upsampled

to the target resolution by nearest neighbor interpolation. Fi-
nally, the weight wp,q is calculated as:

ωp,q =


exp

(
−∆Ip,q

γ

)
, Pedge = 1

αp exp
(
−∆Ip,q

γ

)
+(1− αp) exp

(
−Prange

γ

)
, Pedge = 0

(6)

where
αp =

Prange
maxq∈P {Qrange}

. (7)

In (6), γ is a constant and ∆Ip,q is the maximum color dif-
ference of adjacent pixels across RGB channels.

From (6), we see that when Pedge equals one (i.e., there
is a relatively large range for the block centered at p), it im-
plies the existence of discontinuity in depth. Thus, the weight
wp,q will be negatively correlated to the value ∆Ip,q . In other
words, if the location of the pixel p shows a strong edge in
color, the resulting smoothness term will be weighted by a
small value, which encourages the depth discontinuity to be
aligned with such color edges. On the other hand, when Pedge

approaches zero, this would avoid texture copying by assign-
ing a larger value for the second term of (6) when determin-
ing wp,q . From the above discussion, it can be seen that our
proposed MRF framework will be able to better preserve the
color and depth discontinuities, while not suffering from the
artifacts of texture copy as prior MRF-based approaches did.
Moreover, our MRF will not be sensitive to the pre-defined
threshold σ due to the proposed blending weighting scheme
when Pedge approaches zero.

4. EXPERIMENTAL RESULTS

To evaluate the performance of our method, we consider
images from the Middlebury stereo dataset [10], which pro-
vides HR color and depth image pairs with resolution about
300×400 pixels. We downsample the depth map into lower
resolution ones, and use different upsampling factors for per-
forming depth map SR. We use the same parameter setting
for all images in our experiments, and we have λs = 1.0,
µ = 0.2, σ = 10, γ = 20. Besides qualitatively evaluating
the output SR depth maps by visual comparisons, we also ap-
ply the bad pixel (BP) percentage as the metric for assessing
the performance. As suggested in [9, 10], this is achieved by
scaling the output depth map into a particular range in terms
of depth and determining the number of depth pixels which
differ from the ground-truth ones by 1.

We consider the approaches of bicubic interpolation,
Diebel et al. [4], JBU [2], NAFDU [11], Lu et al.[5], and a
recent work of Kim et al.[6] for both qualitative and quantita-
tive comparisons. We list the BP rates of different images in
Table 1. From this table, we can see that our method achieved
the lowest or comparable error rates as others did. To visu-
alize our results for alleviating texture-copying artifacts, we
show examples produced by different methods in Figure 4.
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Table 1. Performance comparisons of error rate for Venus, Teddy, and Cones with upsampling factors 4 and 8.

Algorithm
Venus Teddy Cones

8× 4× 8× 4× 8× 4×
nonocc. all disc. nonocc. all disc. nonocc. all disc. nonocc. all disc. nonocc. all disc. nonocc. all disc.

Bicubic 1.47 1.86 20.52 0.66 0.92 9.25 11.82 12.61 41.88 6.27 6.95 23.12 15.33 16.04 44.28 8.34 8.93 25.08
Diebel et al. [4] 2.10 2.44 7.52 0.85 1.16 3.93 15.95 15.99 31.59 7.46 8.17 18.02 11.99 13.84 30.06 6.98 8.10 19.82

JBU [2] 1.10 1.61 12.44 0.40 0.72 5.62 11.75 12.68 36.40 5.75 6.61 20.08 12.93 14.74 33.34 6.43 7.54 19.18
NAFDU [11] 0.98 1.46 12.51 0.41 0.69 5.74 11.45 12.37 36.04 5.64 6.48 19.75 12.50 14.31 32.67 6.24 7.31 18.78
Lu et al. [5] 0.98 1.36 7.29 0.24 0.31 3.27 13.73 14.93 31.58 5.14 5.60 14.47 10.95 12.67 23.55 3.73 4.51 10.07

Kim et al. [6] 0.60 0.74 5.83 0.17 0.30 2.31 9.80 10.47 25.63 5.33 6.20 16.86 8.45 9.46 22.89 4.86 5.33 14.62
Ours 0.39 0.49 4.74 0.12 0.16 1.67 9.49 10.77 26.39 3.35 3.69 9.59 6.92 8.16 18.36 3.15 3.82 9.43

Fig. 4. An example region of Venus with similar color but in-
consistent depths. Ground-truth depth map with the example
region (squared in red) and the corresponding color image are
shown in (a) and (b), respectively. Depth maps produced by
(c) Bicubic (BP % = 0.92), (d) Diebel et al. [4] (1.16), (e) JBU
[2] (0.72), (f) NAFDU [11](0.69), (g) Lu et al. [5] (0.31), (h)
Kim et al. [6] (0.30), (i) ours (0.16), and (j) the ground truth.

By examining Figures 4(d), (g), and (h), texture-copying ar-
tifacts were produced in the depth maps due to similar color
presented in the region of interest (ROI). Our result in Fig-
ure 4(i) was robust to such effects and thus was closest to the
ground truth. Another example is shown in Figure 5, in which
a ROI with the same depth contains different color informa-
tion. Comparing the results shown in this figure, we see that
our proposed MRF framework with texture-aware weighting
schemes alleviated this problem, and thus our output was the
best among different approaches.

5. CONCLUSION

We presented a novel learning-based depth map SR frame-
work, which is able to synthesize a HR depth map given its
LR version and a corresponding HR color image. By advanc-
ing sigmoid functions in the proposed formulation, our MRF
suppresses extreme estimation errors while not magnifying
those near depth discontinuities. By incorporating a texture-
aware weighting constraint into our proposed framework, ar-

Fig. 5. An example region of Teddy with the same depth but
different color information. Ground-truth depth map with the
example region and the corresponding color image are shown
in (a) and (b), respectively. Depth maps produced by (c) Bicu-
bic (BP % = 6.95), (d) Diebel et al. [4] (8.17), (e) JBU [2] (6.61),
(f) NAFDU [11] (6.48), (g) Lu et al. [5] (5.60), (h) Kim et al.
[6] (6.20), (i) ours (3.69), and (j) the ground truth.

tifacts of texture copying can be significantly alleviated. Our
experiments confirmed that our approach achieved promising
results, and it was shown to quantitatively and qualitatively
outperformed state-of-the-art depth map SR works.

6. RELATION TO PRIOR WORK

When applying MRF for up-sampling depth maps, one needs
to determine data and smoothness terms for estimating or syn-
thesizing the depth map output. Although metrics like l2-
norm or truncated absolute distance have been investigated in
[4, 5], their lack of robustness in suppressing extreme estima-
tion errors or ad-hoc threshold selection would limit the per-
formance. In our proposed MRF work, we advance sigmoid
functions for addressing the above issues. We further address
the problem of texture-copying, which is not explicitly stud-
ied in recent works [4, 5, 6]. The presence of such artifacts
is due to discontinuity or inconsistency in images or depths,
and we introduce a texture-aware weighting scheme for al-
leviating such artifacts. This scheme allows us to calculate
the smoothness term of MRF based on color and depth image
inputs, and thus improved SR performance can be achieved.
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